当前位置: 首页 > news >正文

浙大陈越何钦铭数据结构07-图6 旅游规划

题目:

有了一张自驾旅游路线图,你会知道城市间的高速公路长度、以及该公路要收取的过路费。现在需要你写一个程序,帮助前来咨询的游客找一条出发地和目的地之间的最短路径。如果有若干条路径都是最短的,那么需要输出最便宜的一条路径。

输入格式:
输入说明:输入数据的第1行给出4个正整数N、M、S、D,其中N(2≤N≤500)是城市的个数,顺便假设城市的编号为0~(N−1);M是高速公路的条数;S是出发地的城市编号;D是目的地的城市编号。随后的M行中,每行给出一条高速公路的信息,分别是:城市1、城市2、高速公路长度、收费额,中间用空格分开,数字均为整数且不超过500。输入保证解的存在。

输出格式:
在一行里输出路径的长度和收费总额,数字间以空格分隔,输出结尾不能有多余空格。

输入样例:
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
输出样例:
3 40

代码及注释:

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>#define MAX_VERTEX_NUM 500
#define MAX_DIST 501
#define MAX_COST 501
#define ERROR -1typedef int Vertex;struct _Edge
{Vertex V, W;int dist, cost;
};
typedef struct _Edge *Edge;struct _MGraph
{int Nv, Ne;int dist[MAX_VERTEX_NUM][MAX_VERTEX_NUM];int cost[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
};
typedef struct _MGraph *MGraph; /* 以邻接矩阵存储的图的类型  */void InsertEdge(MGraph G, Edge E); // 插入边
MGraph CreateGraph(int vertexNum); // 初始化图
MGraph BuildGraph();Vertex FindMinDist(MGraph G, int dist[], bool collected[]);
void Dijkstra(MGraph G, int dist[], int cost[], Vertex S);Vertex src, dst;
// 对于全局的int数组自动初始化为0,bool数组初始化为false
int dist[MAX_VERTEX_NUM];
int cost[MAX_VERTEX_NUM];
bool collected[MAX_VERTEX_NUM];/*
07-图6 旅游规划
https://pintia.cn/problem-sets/1667128414987735040/exam/problems/1667128415088398337难度:2颗星4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 203 40*/int main()
{MGraph G = BuildGraph();Dijkstra(G, dist, cost, src);printf("%d %d\n", dist[dst], cost[dst]);free(G);return 0;
}MGraph CreateGraph(int vertexNum)
{MGraph G = (MGraph)malloc(sizeof(struct _MGraph));G->Nv = vertexNum;G->Ne = 0;Vertex V, W;for (V = 0; V < vertexNum; V++){for (W = 0; W < vertexNum; W++){G->dist[V][W] = MAX_DIST;G->cost[V][W] = MAX_COST;}}return G;
}void InsertEdge(MGraph G, Edge E)
{/* 插入边<V,W> */G->dist[E->V][E->W] = E->dist;G->cost[E->V][E->W] = E->cost;/* 若是无向图则要反向也插入 */G->dist[E->W][E->V] = E->dist;G->cost[E->W][E->V] = E->cost;
}MGraph BuildGraph()
{MGraph G;Edge E;int Nv, Ne;scanf("%d %d %d %d", &Nv, &Ne, &src, &dst);G = CreateGraph(Nv);if (Ne){G->Ne = Ne;E = (Edge)malloc(sizeof(struct _Edge));for (int i = 0; i < G->Ne; i++){scanf("%d %d %d %d", &E->V, &E->W, &E->dist, &E->cost);InsertEdge(G, E);}free(E);}return G;
}Vertex FindMinDist(MGraph G, int dist[], bool collected[])
{ /* 返回未被收录顶点中dist最小者 */Vertex minV = ERROR;int minDist = MAX_DIST;for (Vertex V = 0; V < G->Nv; V++){if (collected[V] == false && minDist > dist[V]){/* 若V未被收录,且dist[V]更小 */minDist = dist[V]; /* 更新最小距离 */minV = V;          /* 更新对应顶点 */}}if (minDist < MAX_DIST) /* 若找到最小dist */return minV;        /* 返回对应的顶点下标 */elsereturn ERROR; /* 若这样的顶点不存在,返回错误标记 */
}void Dijkstra(MGraph G, int dist[], int cost[], Vertex S)
{Vertex V, W;/* 初始化:此处默认邻接矩阵中不存在的边用INFINITY表示 */for (V = 0; V < G->Nv; V++){dist[V] = G->dist[S][V];cost[V] = G->cost[S][V];}/* 先将起点收入集合 */dist[S] = 0;cost[S] = 0;collected[S] = true;while (1){/* V = 未被收录顶点中dist最小者 */V = FindMinDist(G, dist, collected);if (V == ERROR)      /* 若这样的V不存在 */break;           /* 算法结束 */collected[V] = true; /* 收录V */for (W = 0; W < G->Nv; W++) /* 对图中的每个顶点W *//* 若W是V的邻接点并且未被收录 */if (collected[W] == false && G->dist[V][W] < MAX_DIST){if (G->dist[V][W] < 0) /* 若有负边 */return;            /* 不能正确解决,返回错误标记 *//* 若收录V使得dist[W]变小 */if (dist[V] + G->dist[V][W] < dist[W]){dist[W] = dist[V] + G->dist[V][W]; /* 更新dist[W] */cost[W] = cost[V] + G->cost[V][W];}else if (dist[V] + G->dist[V][W] == dist[W] &&cost[V] + G->cost[V][W] < cost[W]){cost[W] = cost[V] + G->cost[V][W];}}} /* while结束*/
}

ChatGPT对代码的分析,评估:

定义了合适的常量:MAX_DIST 和 MAX_COST 的定义符合题目要求,对于表示距离和花费的最大值都设置为 501,有效地区分了有限距离和无穷远的情况。

创建图和插入边:CreateGraph 和 InsertEdge 函数用于创建图和插入边的操作,实现了初始化图的邻接矩阵并向图中添加边的功能。

构建图:BuildGraph 函数根据输入构建了图,并通过调用 CreateGraph 和 InsertEdge 来创建和填充图的邻接矩阵。

Dijkstra 算法:Dijkstra 函数使用 Dijkstra 算法,根据图的邻接矩阵计算从起点到每个顶点的最短距离和最小花费。在这个过程中,使用了辅助函数 FindMinDist 来选择未被收录顶点中距离最小的顶点。

主函数运行:主函数中先调用 BuildGraph 构建图,然后调用 Dijkstra 计算最短距离和最小花费,并输出结果。

执行结果:

在这里插入图片描述

相关文章:

浙大陈越何钦铭数据结构07-图6 旅游规划

题目: 有了一张自驾旅游路线图&#xff0c;你会知道城市间的高速公路长度、以及该公路要收取的过路费。现在需要你写一个程序&#xff0c;帮助前来咨询的游客找一条出发地和目的地之间的最短路径。如果有若干条路径都是最短的&#xff0c;那么需要输出最便宜的一条路径。 输入…...

VUE笔记(七)项目登录

1、安装elementui 在终端执行 vue add element 注册组件 如果要使用哪个组件&#xff0c;大家需要在plugins/element.js中注册该组件 import Vue from vue import { Button } from element-ui Vue.use(Button) 在页面组件中使用 <el-button type"primary"&…...

大语言模型之六- LLM之企业私有化部署

数据安全是每个公司不得不慎重对待的&#xff0c;为了提高生产力&#xff0c;降本增效又不得不接受新技术带来的工具&#xff0c;私有化部署对于公司还是非常有吸引力的。大语言模型这一工具结合公司的数据可以大大提高公司生产率。 私有化LLM需要处理的问题 企业内私有化LLM…...

Python3 列表

Python3 列表 序列是 Python 中最基本的数据结构。 序列中的每个值都有对应的位置值&#xff0c;称之为索引&#xff0c;第一个索引是 0&#xff0c;第二个索引是 1&#xff0c;依此类推。 Python 有 6 个序列的内置类型&#xff0c;但最常见的是列表和元组。 列表都可以进…...

OpenCV基础知识(8)— 图形检测

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。图形检测是计算机视觉的一项重要功能。通过图形检测可以分析图像中可能存在的形状&#xff0c;然后对这些形状进行描绘&#xff0c;例如搜索并绘制图像的边缘&#xff0c;定位图像的位置&#xff0c;判断图像中有没有直线、…...

Java虚拟机

文章目录 JVM运行时数据区域HotSpot虚拟机对象探秘实战&#xff1a;OutOfMemoryError异常 JVM 运行时数据区域 HotSpot虚拟机对象探秘 实战&#xff1a;OutOfMemoryError异常...

c++学习 之 函数重载注意事项

文章目录 引用作为函数重载的条件函数重载遇到默认参数 引用作为函数重载的条件 #include <iostream> using namespace std; void fun(int &a) {cout << "void fun(int & a)" << endl; }void fun(const int &a) {cout << "…...

2023-08-27 LeetCode每日一题(合并区间)

2023-08-27每日一题 一、题目编号 56. 合并区间二、题目链接 点击跳转到题目位置 三、题目描述 以数组 intervals 表示若干个区间的集合&#xff0c;其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间&#xff0c;并返回 一个不重叠的区间数组&#…...

C#,数值计算——调适数值积分法(adaptive quadrature)的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// 调适数值积分法 /// adaptive quadrature /// </summary> public class Adapt { private double x1 { get; } 0.942882415695480; private …...

微信小程序发布迭代版本后如何提示用户强制更新新版本

在点击小程序发布的时候选择&#xff0c;升级选项 之前用户使用过的再打开小程序页面就会弹出升级弹窗modal...

星际争霸之小霸王之小蜜蜂(七)--消失的子弹

目录 前言 一、删除子弹 二、限制子弹数量 三、继续重构代码 总结 前言 昨天我们已经让子弹飞了起来&#xff0c;但是会面临一个和之前小蜜蜂一样的问题&#xff0c;小蜜蜂的行动应该限制在窗口内&#xff0c;那么子弹也是有相同之处&#xff0c;也需要限制一个移动范围&…...

Hadoop入门机安装hadoop

0目录 1.Hadoop入门 2.linux安装hadoop 1.Hadoop入门 定义 Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下&#xff0c;开发分布式程序。充分利用集群的威力进行高速运算和存储。 优势 高可靠性&#xff1a;Hadoop底层维护多…...

cookie技术介绍

title: cookie技术 date: 2023-08-27 21:34:19 tags: [cookie, 网络, http] categories: 网络 我们经常说的cookie缓存数据&#xff0c;允许cookie是什么意思? Cookie也被称作Cookies&#xff0c;它是一种让网站的服务器端可以把少量数据存储在客户端的硬盘或内存中&#x…...

网络摄像头:SparkoCam Crack

SparkoCam 网络摄像头软件 SparkoCam 是一款网络摄像头和视频效果软件&#xff0c;用于广播实时网络摄像头效果并将其应用到视频聊天和录音中。 使用佳能/尼康数码单反相机作为常规网络摄像头通过向实时视频聊天和视频录制添加酷炫的网络摄像头效果和图形来增强 USB 网络摄像…...

【缓存设计】记一种不错的缓存设计思路

文章目录 前言场景设计思路小结 前言 之前与同事讨论接口性能问题时听他介绍了一种缓存设计思路&#xff0c;觉得不错&#xff0c;做个记录供以后参考。 场景 假设有个以下格式的接口&#xff1a; GET /api?keys{key1,key2,key3,...}&types{1,2,3,...}其中 keys 是业务…...

微信小程序大学校园二手教材与书籍拍卖系统设计与实现

摘 要 随着应用技术的发展以及电子商务平台的崛起&#xff0c;利用线上平台实现的二手交易为传统的二手交易市场注入了新的生机&#xff0c;大学校园内的新生和应届毕业生的相互交替产生了巨大的二手交易空间&#xff0c;同时考虑到环保和资源再利用&#xff0c;大学校园的书籍…...

涛然自得周刊(第06期):韩版苏东坡的突围

作者&#xff1a;何一涛 日期&#xff1a;2023 年 8 月 27 日 涛然自得周刊主要精选作者阅读过的书影音内容&#xff0c;不定期发布。历史周刊内容可以看这里。 电影 兹山鱼谱 讲述丁若铨因政治事件被贬黜到了遥远的黑山岛。来到岛上后&#xff0c;丁被大自然环境疗愈&#…...

DOCKER 部署 webman项目

# 设置基础镜像 FROM php:8.2-fpm# 安装必要的软件包和依赖项 RUN apt-get update && apt-get install -y \nginx \libzip-dev \libpng-dev \libjpeg-dev \libfreetype6-dev \&& rm -rf /var/lib/apt/lists/*# 安装 PHP 扩展 RUN docker-php-ext-configure gd …...

LLMs:LangChain-Chatchat(一款可实现本地知识库问答应用)的简介、安装、使用方法之详细攻略

LLMs&#xff1a;LangChain-Chatchat(一款可实现本地知识库问答应用)的简介、安装、使用方法之详细攻略 目录 LangChain-Chatchat的简介 1、原理图解 2、文档处理实现流程 1、模型支持 (1)、LLM 模型支持 (2)、Embedding 模型支持 LangChain-Chatchat的安装 1、镜像部署…...

Qt 解析XML文件 QXmlStreamReader

如何使用QXmlStreamReader来解析格式良好的XML&#xff0c;Qt的文档中指出&#xff0c;它是一种更快、更方便的Qt自己的SAX解析器&#xff08;QXmlSimpleReader&#xff09;的替代&#xff0c;它也较快&#xff0c;在某种情况下&#xff0c;比DOM&#xff08;QDomDocument&…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...