当前位置: 首页 > news >正文

边写代码边学习之Bidirectional LSTM

1.  什么是Bidirectional  LSTM

双向 LSTM (BiLSTM) 是一种主要用于自然语言处理的循环神经网络。 与标准 LSTM 不同,输入是双向流动的,并且它能够利用双方的信息。 它也是一个强大的工具,可以在序列的两个方向上对单词和短语之间的顺序依赖关系进行建模。

综上所述,BiLSTM 又增加了一层 LSTM,从而反转了信息流的方向。 简而言之,这意味着输入序列在附加的 LSTM 层中向后流动。 然后,我们以多种方式组合两个 LSTM 层的输出,例如平均、求和、乘法或串联。

为了说明这一点,展开的 BiLSTM 如下图所示:

这种类型的架构在现实世界的问题中具有许多优势,尤其是在 NLP 中。 主要原因是输入序列的每个组成部分都包含来自过去和现在的信息。 因此,BiLSTM 可以通过组合两个方向的 LSTM 层来产生更有意义的输出。

例如这句话:

Apple is something that…

可能是关于苹果作为水果或关于苹果公司。 因此,LSTM 不知道“Apple”是什么意思,因为它不知道未来的上下文。

相反,最有可能在这两个句子中:

Apple is something that competitors simply cannot reproduce.

Apple is something that I like to eat.

BiLSTM 对于序列(句子)的每个组成部分(单词)都会有不同的输出。 因此,BiLSTM 模型在一些 NLP 任务中是有益的,例如句子分类(sentence classification)、翻译(translation)和实体识别(entity recognition)。 此外,它还应用于语音识别(speech recognition)、蛋白质结构预测(protein structure prediction)、手写识别(handwritten recognition)和类似领域。

最后,关于 BiLSTM 与 LSTM 相比的缺点,值得一提的是 BiLSTM 是一个速度慢得多的模型,并且需要更多的训练时间。 因此,建议仅在确实有必要时才使用它。

2. 实验代码

2.1. Bidirectional layer 方法介绍

tf.keras.layers.Bidirectional(layer, merge_mode="concat", weights=None, backward_layer=None, **kwargs
)

参数

layer:keras.layers.RNN实例,例如keras.layers.LSTM或keras.layers.GRU。 它也可以是满足以下条件的 keras.layers.Layer 实例:
成为序列处理层(接受 3D+ 输入)。
有一个 go_backwards、return_sequences 和 return_state 属性(与 RNN 类具有相同的语义)。
有一个 input_spec 属性。
通过 get_config() 和 from_config() 实现序列化。 请注意,创建新 RNN 层的推荐方法是编写自定义 RNN 单元并将其与 keras.layers.RNN 一起使用,而不是直接子类化 keras.layers.Layer。 - 当 returns_sequences 为 true 时,无论该层的原始 Zero_output_for_mask 值如何,屏蔽时间步长的输出都将为零。
merge_mode:组合前向和后向 RNN 输出的模式。 {'sum'、'mul'、'concat'、'ave'、None} 之一。 如果没有,输出将不会被组合,它们将作为列表返回。 默认值为“concat”。
back_layer:可选的 keras.layers.RNN 或 keras.layers.Layer 实例,用于处理向后输入处理。 如果未提供backward_layer,则作为层参数传递的层实例将用于自动生成后向层。 请注意,提供的backward_layer层应具有与layer参数相匹配的属性,特别是它应具有相同的stateful、return_states、return_sequences等值。此外,backward_layer和layer应具有不同的go_backwards参数值。 如果不满足这些要求,将会引发 ValueError。

2.2. 搭建一个只有一层LSTM和Dense网络的模型。

def simple_lstm_layer():# Create a dense layer with 10 output neurons and input shape of (None, 20)model = Sequential()model.add(Bidirectional(LSTM(3, return_sequences=True), input_shape=(3, 2)))model.add(Dense(1))  # Output layer with one neuronprint(model.summary())
if __name__ == '__main__':simple_lstm_layer()

输出

Model: "sequential"
_________________________________________________________________Layer (type)                Output Shape              Param #   
=================================================================bidirectional (Bidirectiona  (None, 3, 6)             144       l)                                                              dense (Dense)               (None, 3, 1)              7         =================================================================
Total params: 151
Trainable params: 151
Non-trainable params: 0
_________________________________________________________________
None

2.3. 验证Bidirectional  LSTM里的逻辑

 假设我的输入数据是x = [1,0], 

forward_kernel = [[[2, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0],

              [1, 1, 0, 1, 1, 0, 0, 1, 1 ,0, 0, 0],]]

forward_recurrent_kernel = [[1, 0, 0, 1, 2,1,0,1,2,0,1,0],

                              [1, 1, 0, 0, 2,1,0,1,2,2,0,0],

                              [1, 0, 1, 2, 0,1,0,1,1,0,1,0]]

forward_biase = [3, 1, 0, 1, 1,0,0,1,0,2,0.0,0]

backward_kernel = [[[2, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0],

              [1, 1, 0, 1, 1, 0, 0, 1, 1 ,0, 0, 0],]]

backward_recurrent_kernel = [[1, 0, 0, 1, 2,1,0,1,2,0,1,0],

                              [1, 1, 0, 0, 2,1,0,1,2,2,0,0],

                              [1, 0, 1, 2, 0,1,0,1,1,0,1,0]]

backward_biase = [3, 1, 0, 1, 1,0,0,1,0,2,0.0,0]

通过下面手算,输出: [[[0. 4. 0. 0. 4. 0.]]],  forward/backward  memory_state的结果是[[0. 4. 0.]], forward/backward carry_state 的结果是 [[0. 4. 1.]].  注意无激活函数。

 代码验证上面的结果

def change_weight():# Create a simple Bidirectional LSTM layerlstm_layer = LSTM(units=3, input_shape=(3, 2), activation=None, recurrent_activation=None, return_sequences=True,return_state= True)bi_lstm_layer = Bidirectional(lstm_layer, merge_mode='concat')# Simulate input data (batch size of 1 for demonstration)input_data = np.array([[[1.0, 2], [2, 3], [3, 4]],[[5, 6], [6, 7], [7, 8]],[[9, 10], [10, 11], [11, 12]]])# Pass the input data through the layer to initialize the weights and biasesbi_lstm_layer(input_data)kernel = np.array([[2, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0],[1, 1, 0, 1, 1, 0, 0, 1, 1 ,0, 0, 0],])recurrent_kernel = np.array([[1, 0, 0, 1, 2,1,0,1,2,0,1,0],[1, 1, 0, 0, 2,1,0,1,2,2,0,0],[1, 0, 1, 2, 0,1,0,1,1,0,1,0]])biases = np.array([3, 1, 0, 1, 1,0,0,1,0,2,0.0,0])bi_lstm_layer.set_weights([kernel, recurrent_kernel, biases, kernel, recurrent_kernel, biases])print(bi_lstm_layer.get_weights())test_data = np.array([[[1,0.0]]])output, memory_state, carry_state, backward_memory_state, backward_carry_state  = bi_lstm_layer(test_data)print('output = ',output.numpy())print('forward memory_state = ', memory_state.numpy())print('forward carry_state = ',carry_state.numpy())print('backward memory state = ', backward_memory_state.numpy())print('backward carry state = ',backward_carry_state.numpy())if __name__ == '__main__':change_weight()

输出

[array([[2., 1., 1., 0., 0., 0., 0., 1., 1., 0., 1., 0.],[1., 1., 0., 1., 1., 0., 0., 1., 1., 0., 0., 0.]], dtype=float32), array([[1., 0., 0., 1., 2., 1., 0., 1., 2., 0., 1., 0.],[1., 1., 0., 0., 2., 1., 0., 1., 2., 2., 0., 0.],[1., 0., 1., 2., 0., 1., 0., 1., 1., 0., 1., 0.]], dtype=float32), array([3., 1., 0., 1., 1., 0., 0., 1., 0., 2., 0., 0.], dtype=float32), array([[2., 1., 1., 0., 0., 0., 0., 1., 1., 0., 1., 0.],[1., 1., 0., 1., 1., 0., 0., 1., 1., 0., 0., 0.]], dtype=float32), array([[1., 0., 0., 1., 2., 1., 0., 1., 2., 0., 1., 0.],[1., 1., 0., 0., 2., 1., 0., 1., 2., 2., 0., 0.],[1., 0., 1., 2., 0., 1., 0., 1., 1., 0., 1., 0.]], dtype=float32), array([3., 1., 0., 1., 1., 0., 0., 1., 0., 2., 0., 0.], dtype=float32)]
output =  [[[0. 4. 0. 0. 4. 0.]]]
forward memory_state =  [[0. 4. 0.]]
forward carry_state =  [[0. 4. 1.]]
backward memory state =  [[0. 4. 0.]]
backward carry state =  [[0. 4. 1.]]

相关文章:

边写代码边学习之Bidirectional LSTM

1. 什么是Bidirectional LSTM 双向 LSTM (BiLSTM) 是一种主要用于自然语言处理的循环神经网络。 与标准 LSTM 不同,输入是双向流动的,并且它能够利用双方的信息。 它也是一个强大的工具,可以在序列的两个方向上对单词和短语之间的顺序依赖…...

Django学习笔记-实现联机对战

笔记内容转载自 AcWing 的 Django 框架课讲义,课程链接:AcWing Django 框架课。 CONTENTS 1. 统一长度单位2. 增加联机对战模式3. 配置Django Channels 1. 统一长度单位 多人模式中每个玩家所看到的地图相对来说应该是一样的,因此需要固定地…...

nacos总结1

5.Nacos注册中心 国内公司一般都推崇阿里巴巴的技术,比如注册中心,SpringCloudAlibaba也推出了一个名为Nacos的注册中心。 5.1.认识和安装Nacos Nacos是阿里巴巴的产品,现在是SpringCloud中的一个组件。相比Eureka功能更加丰富&#xff0c…...

Web安全测试(三):SQL注入漏洞

一、前言 结合内部资料,与安全渗透部门同事合力整理的安全测试相关资料教程,全方位涵盖电商、支付、金融、网络、数据库等领域的安全测试,覆盖Web、APP、中间件、内外网、Linux、Windows多个平台。学完后一定能成为安全大佬! 全部…...

Webstorm 入门级玩转uni-app 项目-微信小程序+移动端项目方案

1. Webstorm uni-app语法插件 : Uniapp Support Uniapp Support - IntelliJ IDEs Plugin | Marketplace 第一个是不收费,第二个收费 我选择了第二个Uniapp Support ,有试用30天,安装重启webstorm之后,可以提高生产率…...

从零开始的Hadoop学习(三)| 集群分发脚本xsync

1. Hadoop目录结构 bin目录:存放对Hadoop相关服务(hdfs,yarn,mapred)进行操作的脚本etc目录:Hadoop的配置文件目录,存放Hadoop的配置文件lib目录:存放Hadoop的本地库(对…...

golang http transport源码分析

golang http transport源码分析 前言 Golang http库在日常开发中使用会很多。这里通过一个demo例子出发,从源码角度梳理golang http库底层的数据结构以及大致的调用流程 例子 package mainimport ("fmt""net/http""net/url""…...

spring boot 项目整合 websocket

1.业务背景 负责的项目有一个搜索功能,搜索的范围几乎是全表扫,且数据源类型贼多。目前对搜索的数据量量级未知,但肯定不会太少,不仅需要搜索还得点击下载文件。 关于搜索这块类型 众多,未了避免有个别极大数据源影响整…...

统计学补充概念-17-线性决策边界

概念 线性决策边界是一个用于分类问题的线性超平面,可以将不同类别的样本分开。在二维空间中,线性决策边界是一条直线,将两个不同类别的样本分隔开来。对于更高维的数据,决策边界可能是一个超平面。 线性决策边界的一般形式可以表…...

指针变量、指针常量与常量指针的区别

指针变量、指针常量与常量指针 一、指针变量 定义:指针变量是指存放地址的变量,其值是地址。 一般格式:基类型 指针变量名;(int p) 关键点: 1、int * 表示一种指针类型(此处指int 类型),p(变量…...

mq与mqtt的关系

文章目录 mqtt 与 mq的区别mqtt 与 mq的详细区别传统消息队列RocketMQ和微消息队列MQTT对比:MQ与RPC的区别 mqtt 与 mq的区别 mqtt:一种通信协议,规范 MQ:一种通信通道(方式),也叫消息队列 MQ…...

代码大全阅读随笔 (二)

软件设计 设计就是把需求分析和编码调试连在一起的活动。 设计不是在谁的头脑中直接跳出来了,他是不断的设计评估,非正式讨论,写实验代码以及修改实验代码中演化和完善。 作为软件开发人员,我们不应该试着在同一时间把整个程序都塞…...

vue 项目的屏幕自适应方案

方案一:使用 scale-box 组件 属性: width 宽度 默认 1920height 高度 默认 1080bgc 背景颜色 默认 "transparent"delay自适应缩放防抖延迟时间(ms) 默认 100 vue2版本:vue2大屏适配缩放组件(vu…...

23软件测试高频率面试题汇总

一、 你们的测试流程是怎么样的? 答:1.项目开始阶段,BA(需求分析师)从用户方收集需求并将需求转化为规格说明书,接 下来在项目组领导会组织需求评审。 2.需求评审通过后,BA 会组织项目经理…...

PHP8的匿名函数-PHP8知识详解

php 8引入了匿名函数(Anonymous Functions),它是一种创建短生命周期的函数,不需要命名,并且可以在其作用域内直接使用。以下是在PHP 8中使用匿名函数的知识要点: 1、创建匿名函数,语法格式如下&…...

Redis—Redis介绍(是什么/为什么快/为什么做MySQL缓存等)

一、Redis是什么 Redis 是一种基于内存的数据库,对数据的读写操作都是在内存中完成,因此读写速度非常快,常用于缓存,消息队列、分布式锁等场景。 Redis 提供了多种数据类型来支持不同的业务场景,比如 String(字符串)、…...

C语言链表梳理-2

链表头使用结构体&#xff1a;struct Class 链表中的每一项使用结构体&#xff1a;struct Student#include <stdio.h>struct Student {char * StudentName;int StudentAge;int StudentSex;struct Student * NextStudent; };struct Class {char *ClassName;struct Stude…...

【深度学习】实验03 特征处理

文章目录 特征处理标准化归一化正则化 特征处理 标准化 # 导入标准化库 from sklearn.preprocessing import StandardScalerfrom matplotlib import gridspec import numpy as np import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore&quo…...

基于Dpabi的功能连接

1.预处理 这里预处理用Gretna软件进行&#xff0c;共分为以下几步&#xff1a; &#xff08;1&#xff09;DICOM转NIfTI格式 (2)去除前10个时间点(Remove first 10 times points)&#xff1a;由于机器刚启动、被试刚躺进去也还需适应环境&#xff0c;导致刚开始扫描的数据很…...

在React项目是如何捕获错误的?

文章目录 react中的错误介绍解决方案后言 react中的错误介绍 错误在我们日常编写代码是非常常见的 举个例子&#xff0c;在react项目中去编写组件内JavaScript代码错误会导致 React 的内部状态被破坏&#xff0c;导致整个应用崩溃&#xff0c;这是不应该出现的现象 作为一个框架…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...