当前位置: 首页 > news >正文

算法leetcode|74. 搜索二维矩阵(rust重拳出击)


文章目录

  • 74. 搜索二维矩阵:
    • 样例 1:
    • 样例 2:
    • 提示:
  • 分析:
  • 题解:
    • rust:
    • go:
    • c++:
    • python:
    • java:


74. 搜索二维矩阵:

给你一个满足下述两条属性的 m x n 整数矩阵:

  • 每行中的整数从左到右按非递减顺序排列。
  • 每行的第一个整数大于前一行的最后一个整数。

给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返回 false

样例 1:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3输出:true

样例 2:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13输出:false

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 100
  • -104 <= matrix[i][j], target <= 104

分析:

  • 面对这道算法题目,二当家的再次陷入了沉思。
  • 在有序列表中,查找指定元素,一般使用二分查找,非常高效。
  • 但是题目中是个二维矩阵,是否还能用二分查找呢?
  • 首先想到,可以用两次二分查找,分别看在哪行,再看在哪列,效率已经很高了,但是是否能只用一次二分查找呢?
  • 想要使用一次二分查找,就需要将二维矩阵转换成线性结构,有什么办法呢?
  • 我们可以快速算出矩阵的长和宽,也就可以拿到它的总长度,我们可以快速将长度范围内的下标,快速转换成行和列的下标,因为行列都是等长的。

题解:

rust:

impl Solution {pub fn search_matrix(matrix: Vec<Vec<i32>>, target: i32) -> bool {let (m, n) = (matrix.len(), matrix[0].len());let (mut left, mut right) = (0, m * n);while left < right {let mid = left + ((right - left) >> 1);let v = matrix[mid / n][mid % n];if v < target {left = mid + 1;} else if v > target {right = mid;} else {return true;}}return false;}
}

go:

func searchMatrix(matrix [][]int, target int) bool {m, n := len(matrix), len(matrix[0])i := sort.Search(m*n, func(i int) bool { return matrix[i/n][i%n] >= target })return i < m*n && matrix[i/n][i%n] == target
}

c++:

class Solution {
public:bool searchMatrix(vector<vector<int>>& matrix, int target) {const int m = matrix.size(), n = matrix[0].size();int left = 0, right = m * n;while (left < right) {const int mid = left + ((right - left) >> 1);const int v = matrix[mid / n][mid % n];if (v < target) {left = mid + 1;} else if (v > target) {right = mid;} else {return true;}}return false;}
};

python:

class Solution:def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:m, n = len(matrix), len(matrix[0])left, right = 0, m * nwhile left < right:mid = left + ((right - left) >> 1)v = matrix[mid // n][mid % n]if v < target:left = mid + 1elif v > target:right = midelse:return Truereturn False

java:

class Solution {public boolean searchMatrix(int[][] matrix, int target) {final int m = matrix.length, n = matrix[0].length;int left = 0, right = m * n;while (left < right) {final int mid = left + ((right - left) >> 1);final int v = matrix[mid / n][mid % n];if (v < target) {left = mid + 1;} else if (v > target) {right = mid;} else {return true;}}return false;}
}

非常感谢你阅读本文~
欢迎【点赞】【收藏】【评论】三连走一波~
放弃不难,但坚持一定很酷~
希望我们大家都能每天进步一点点~
本文由 二当家的白帽子:https://le-yi.blog.csdn.net/ 博客原创~


相关文章:

算法leetcode|74. 搜索二维矩阵(rust重拳出击)

文章目录 74. 搜索二维矩阵&#xff1a;样例 1&#xff1a;样例 2&#xff1a;提示&#xff1a; 分析&#xff1a;题解&#xff1a;rust&#xff1a;go&#xff1a;c&#xff1a;python&#xff1a;java&#xff1a; 74. 搜索二维矩阵&#xff1a; 给你一个满足下述两条属性的…...

element浅尝辄止7:InfiniteScroll 无限滚动

滚动加载&#xff1a;滚动至底部时&#xff0c;加载更多数据。 1.如何使用&#xff1f; //在要实现滚动加载的列表上上添加v-infinite-scroll&#xff0c;并赋值相应的加载方法&#xff0c; //可实现滚动到底部时自动执行加载方法。<template><ul class"infinit…...

Day05-Vue基础

Day05-Vue基础 一、单向数据流 父子组件通信。会在父组件中定义好数据,将数据传递给子组件,可以使用这个数据 Vue中针对props这个属性提出了一个单向数据流的概念。 Vue针对props做了一些限制,可以接受值,使用这个值,规范中不要去直接修改这个值 目的是为了对数据流进…...

《机器学习在车险定价中的应用》实验报告

目录 一、实验题目 机器学习在车险定价中的应用 二、实验设置 1. 操作系统&#xff1a; 2. IDE&#xff1a; 3. python&#xff1a; 4. 库&#xff1a; 三、实验内容 实验前的猜想&#xff1a; 四、实验结果 1. 数据预处理及数据划分 独热编码处理结果&#xff08;以…...

14. Docker中实现CI和CD

目录 1、前言 2、什么是CI/CD 3、部署Jenkins 3.1、下载Jenkins 3.2、启动Jenkins 3.3、访问Jenkins页面 4、Jenkins部署一个应用 5、Jenkins实现Docker应用的持续集成和部署 5.1、创建Dockerfile 5.2、集成Jenkins和Docker 6、小结 1、前言 持续集成(CI/CD)是一种…...

【多思路解决喝汽水问题】1瓶汽水1元,2个空瓶可以换一瓶汽水,给20元,可以喝多少汽水

题目内容 喝汽水问题 喝汽水&#xff0c;1瓶汽水1元&#xff0c;2个空瓶可以换一瓶汽水&#xff0c;给20元&#xff0c;可以喝多少汽水&#xff08;编程实现&#xff09;。 题目分析 数学思路分析 根据给出的问题和引用内容&#xff0c;我们可以得出答案。 首先&#xff…...

P1591 阶乘数码(Java高精度)

题目描述 求 n ! n! n! 中某个数码出现的次数。 输入格式 第一行为 t ( t ≤ 10 ) t(t \leq 10) t(t≤10)&#xff0c;表示数据组数。接下来 t t t 行&#xff0c;每行一个正整数 n ( n ≤ 1000 ) n(n \leq 1000) n(n≤1000) 和数码 a a a。 输出格式 对于每组数据&a…...

Mybatis的动态SQL及关键属性和标识的区别(对SQL更灵活的使用)

&#xff08; 虽然文章中有大多文本内容&#xff0c;想了解更深需要耐心看完&#xff0c;必定大有受益 &#xff09; 目录 一、动态SQL ( 1 ) 是什么 ( 2 ) 作用 ( 3 ) 优点 ( 4 ) 特殊标签 ( 5 ) 演示 二、#和$的区别 2.1 #使用 ( 1 ) #占位符语法 ( 2 ) #优点 2.…...

mysql下载

网址 MySQL :: Download MySQL Community Serverhttps://dev.mysql.com/downloads/mysql/ 2、选择MSI进行安装 3、这里我选择离线安装 4、这里我选择直接下载 5、等待下载安装即可...

聚合函数与窗口函数

聚合函数 回答一 聚合函数&#xff08;Aggregate Functions&#xff09;是SQL中的函数&#xff0c;用于对一组数据进行计算&#xff0c;并返回单个结果。聚合函数通常用于统计和汇总数据&#xff0c;包括计算总和、平均值、计数、最大值和最小值等。 以下是一些常见的聚合函…...

c语言实现堆

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、树1、树的概念2、树的相关概念3、树的表示 二、二叉树1、二叉树概念2、特殊的二叉树3、二叉树的性质4、二叉树的顺序结构5、二叉树的链式结构 三、堆(二叉树…...

ubuntu 如何将文件打包成tar.gz

要将文件打包成.tar.gz文件&#xff0c;可以使用以下命令&#xff1a; tar -czvf 文件名.tar.gz 文件路径 其中&#xff0c;-c表示创建新的归档文件&#xff0c;-z表示使用gzip进行压缩&#xff0c;-v表示显示详细的打包过程&#xff0c;-f表示指定归档文件的名称。 例如&am…...

前端优化页面加载速度的方法(持续更新)

提速方法方向 延迟脚本加载 使用 async 属性&#xff1a; 在这种方法中&#xff0c;脚本将在下载完成后立即执行&#xff0c;而不会阻塞其他页面资源的加载和渲染。这适用于那些不依赖于其他脚本和页面内容的脚本&#xff0c;例如分析脚本等。示例如下&#xff1a; html …...

利用SSL证书的SNI特性建立自己的爬虫ip服务器

今天我要和大家分享一个关于自建多域名HTTPS爬虫ip服务器的知识&#xff0c;让你的爬虫ip服务器更加强大&#xff01;无论是用于数据抓取、反爬虫还是网络调试&#xff0c;自建一个支持多个域名的HTTPS爬虫ip服务器都是非常有价值的。本文将详细介绍如何利用SSL证书的SNI&#…...

HTML和CSS

HTML HTML(Hyper Text Markup Language):超文本语言 超文本&#xff1a;超越了文本的限制&#xff0c;比普通文本更强大。除了文字信息&#xff0c;还可以定义图片、音频、视频等内容。 标记语言&#xff1a;由标签构成的语言 HTML标签都是预定义好的。例如&#xff1a;使用&l…...

C#的IndexOf

在 C# 中&#xff0c;IndexOf 是一个字符串、数组或列表的方法&#xff0c;用于查找指定元素的第一个匹配项的索引。它返回一个整数值&#xff0c;表示匹配项在集合中的位置&#xff0c;如果未找到匹配项&#xff0c;则返回 -1。 IndexOf 方法有多个重载形式&#xff0c;可以根…...

深度学习2.神经网络、机器学习、人工智能

目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、神经网络…...

利用LLM模型微调的短课程;钉钉宣布开放智能化底座能力

&#x1f989; AI新闻 &#x1f680; 钉钉宣布开放智能化底座能力AI PaaS&#xff0c;推动企业数智化转型发展 摘要&#xff1a;钉钉在生态大会上宣布开放智能化底座能力AI PaaS&#xff0c;与生态伙伴探寻企业服务的新发展道路。AI PaaS结合5G、云计算和人工智能技术的普及和…...

软件工程(七) UML之用例图详解

1、UML-4+1视图 UML-4+1视图将会与后面的架构4+1视图会一一对应上 视图往往出现在什么场景:我们看待一个事物,我们觉得它很复杂,难以搞清楚,为了化繁为简,我们会从一个侧面去看,这就是视图。而4+1视图就是分不同角度去看事物。 逻辑视图(logical view) 一般使用类与对…...

pd.cut()函数--Pandas

1. 函数功能 将连续性数值进行离散化处理&#xff1a;如对年龄、消费金额等进行分组 2. 函数语法 pandas.cut(x, bins, rightTrue, labelsNone, retbinsFalse, precision3, include_lowestFalse, duplicatesraise, orderedTrue)3. 函数参数 参数含义x要离散分箱操作的数组&…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

沙箱虚拟化技术虚拟机容器之间的关系详解

问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西&#xff0c;但是如果把三者放在一起&#xff0c;它们之间到底什么关系&#xff1f;又有什么联系呢&#xff1f;我不是很明白&#xff01;&#xff01;&#xff01; 就比如说&#xff1a; 沙箱&#…...

软件工程 期末复习

瀑布模型&#xff1a;计划 螺旋模型&#xff1a;风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合&#xff1a;模块内部功能紧密 模块之间依赖程度小 高内聚&#xff1a;指的是一个模块内部的功能应该紧密相关。换句话说&#xff0c;一个模块应当只实现单一的功能…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...

如何通过git命令查看项目连接的仓库地址?

要通过 Git 命令查看项目连接的仓库地址&#xff0c;您可以使用以下几种方法&#xff1a; 1. 查看所有远程仓库地址 使用 git remote -v 命令&#xff0c;它会显示项目中配置的所有远程仓库及其对应的 URL&#xff1a; git remote -v输出示例&#xff1a; origin https://…...