当前位置: 首页 > news >正文

基于LOF算法的异常值检测

目录

  • LOF算法简介
  • Sklearn官网LOF算法应用实例1
  • Sklearn官网LOF算法应用实例2
  • 基于LOF算法鸢尾花数据集异常值检测
    • 读取数据
    • 构造数据
    • 可视化,画出可疑异常点
    • LOF算法

LOF算法简介

LOF异常检测算法是一种基于密度的异常检测算法,基于密度的异常检测算法主要思想是:给定的样本数据集,对于数据集中的点,如果其局部领域的点都很密集,那么这个点大概率为正常的数据点;而如果这个点距离其相邻的点距离较远,也就是在一个局部领域的点密度较小,那么这个点可能为异常点。

Sklearn官网LOF算法应用实例1

在这里插入图片描述
clf.negative_outlier_factor_输出:array([ -0.98214286, -1.03703704, -73.36970899, -0.98214286])
绝对值越大于1则越有可能是异常。很明显101.1最有可能是异常。

Sklearn官网LOF算法应用实例2

导入包:
在这里插入图片描述
构造二维数据,以及一些离群点,并可视化:
在这里插入图片描述
LOF算法:
在这里插入图片描述
根据X_scores可视化,红色圈越大,该点越可能是异常点:
在这里插入图片描述

基于LOF算法鸢尾花数据集异常值检测

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from sklearn.neighbors import LocalOutlierFactor
from sklearn.datasets import load_iris
matplotlib.rcParams['font.sans-serif']=['SimHei']   # 用黑体显示中文
%matplotlib inline

读取数据

iris_data = load_iris()
iris_data.data[0:5,:]
array([[5.1, 3.5, 1.4, 0.2],[4.9, 3. , 1.4, 0.2],[4.7, 3.2, 1.3, 0.2],[4.6, 3.1, 1.5, 0.2],[5. , 3.6, 1.4, 0.2]])
# 数据规模
iris_data.data.shape
(150, 4)
# 特征
iris_data.feature_names
['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)']
# 查看类别
pd.DataFrame(iris_data.target).value_counts(), iris_data.target_names
(0    501    502    50dtype: int64,array(['setosa', 'versicolor', 'virginica'], dtype='<U10'))

构造数据

这里为方便可视化,只选取iris数据集中 ‘sepal width (cm)’ 和 ‘petal width (cm)’ 两个特征

data = iris_data.data[:, [1, 3]]
data = pd.DataFrame(data, columns=iris_data.feature_names[1:4:2])#['sepal width (cm)','petal width (cm)']
data.head()
sepal width (cm)petal width (cm)
03.50.2
13.00.2
23.20.2
33.10.2
43.60.2

可视化,画出可疑异常点

# 可视化两个特征'sepal width (cm)','petal width (cm)'
data.plot(kind="scatter", x="sepal width (cm)", y="petal width (cm)", c='r', figsize=(6,2))## 圈出可疑的异常点
plt.plot(2.3, 0.3, "ko", markersize=20, markerfacecolor="none")
plt.annotate("可能异常点", xy=(2.3, 0.48), xytext=(2, 0.75), arrowprops=dict(facecolor="blue"))plt.plot(3.8, 2.1, "ko", markersize=30, markerfacecolor="none")
plt.annotate("可能异常点", xy=(3.9, 1.9), xytext=(4, 1.5), arrowprops=dict(facecolor="blue"))plt.plot(4.4, 0.4, "ko", markersize=20, markerfacecolor="none")
plt.annotate("可能异常点", xy=(4.3, 0.5), xytext=(4.5, 1), arrowprops=dict(facecolor="blue"))
Text(4.5, 1, '可能异常点')

在这里插入图片描述

LOF算法

lof = LocalOutlierFactor(n_neighbors=30, metric="minkowski")
outlier_pre = lof.fit_predict(data.values)
"异常值数量:%d"%np.sum(outlier_pre==-1)
'异常值数量:7'
# 异常点
data[outlier_pre==-1]
sepal width (cm)petal width (cm)
154.40.4
334.20.2
412.30.3
602.01.0
1093.62.5
1173.82.2
1313.82.0
scores = lof.negative_outlier_factor_# negative_outlier_factor_数值越大越正常;数值越小越不正常,可能是离群点scores = (scores.max()-scores)/(scores.max()-scores.min())
data.plot(kind="scatter", x="sepal width (cm)", y="petal width (cm)", c='r', figsize=(6,2))
plt.scatter(data["sepal width (cm)"], data["petal width (cm)" ], s=800*scores, edgecolors='k', facecolor="none",label="score")

在这里插入图片描述

相关文章:

基于LOF算法的异常值检测

目录 LOF算法简介Sklearn官网LOF算法应用实例1Sklearn官网LOF算法应用实例2基于LOF算法鸢尾花数据集异常值检测读取数据构造数据可视化&#xff0c;画出可疑异常点LOF算法 LOF算法简介 LOF异常检测算法是一种基于密度的异常检测算法&#xff0c;基于密度的异常检测算法主要思想…...

软考-系统可靠性原理

系统可靠性原理...

【Unity】【Amplify Shader Editor】ASE入门系列教程第二课 硬边溶解

黑色为0,白色为1 新建材质&#xff08;不受光照影响&#xff09; 拖入图片 设置 添加节点&#xff1a; 快捷键&#xff1a;K 组合通道&#xff1a;快捷键 V 完成图...

对神经网络理解的个人记录

对神经网络理解的个人记录 一、 神经网络为什么可以拟合函数、非线性函数二、 用向量表示特征(语音、文本、视频)。然后如何计算向量之间的相似度2.1 欧氏距离的计算2.2 点积运算2.3 余弦相似度计算一、 神经网络为什么可以拟合函数、非线性函数 第一个小短片:讲解神经网络为什…...

华为数通方向HCIP-DataCom H12-821题库(单选题:61-80)

第61题 关于 BGP 的Keepalive报文消息的描述,错误的是 A、Keepalive周期性的在两个BGP邻居之间发送 B、Keepalive报文主要用于对等路由器间的运行状态和链路的可用性确认 C、Keepalive 报文只包含一个BGP数据报头 D、缺省情况下,Keepalive 的时间间隔是180s 答案&#xff…...

Unity带有时效性的数据存储

Unity带有时效性的数据存储 引言 在Unity项目开发中&#xff0c;有时候会遇到带有时效性的数据存储&#xff0c;比如账号信息、token等&#xff0c;都是具有时效性的&#xff0c;这时候我们就需要在这些信息过期的时候将对应的信息作废。 实现 这个功能怎么实现呢&#xff…...

vue 子组件 emit传递事件和事件数据给父组件

1 子组件通过emit 函数 传递事件名init-complete 和 数据dateRange this.$emit(init-complete, dateRange) 2 父组件 创建方法 接收数据 handleInitComplete(dateRange) {} 3 父组件 创建的方法 和 子组件事件绑定 <component :is"currentComponent" :passOb…...

Zenity 简介

什么使 Zenity Zenity 是一个开源的命令行工具&#xff0c;它提供了一种简单的方式来创建图形化的用户界面&#xff08;GUI&#xff09;对话框&#xff0c;以与用户进行交互。它基于 GTK 库&#xff0c;可以在 Linux 和其他 UNIX-like 系统上使用。 Zenity 可以通过命令行或脚…...

c# 数组反转

一个数组是{1&#xff0c;2&#xff0c;3&#xff0c;4&#xff0c;5&#xff0c;6}&#xff0c;把它变成{6&#xff0c;5&#xff0c;4&#xff0c;3&#xff0c;2&#xff0c;1} 1.创建一个和原数组长度类型一样的数组来接收反转的数据 private static void Main(string[] a…...

CSS学习笔记01

CSS笔记01 什么是CSS CSS&#xff08;Cascading Style Sheets &#xff09;&#xff1a;层叠样式表&#xff0c;也可以叫做级联样式表&#xff0c;是一种用来表现 HTML 或 XML 等文件样式的计算机语言。字体&#xff0c;颜色&#xff0c;边距&#xff0c;高度&#xff0c;宽度…...

数据结构,队列,顺序表队列,链表队列

队列是一种常见的数据结构&#xff0c;它具有先进先出&#xff08;First-In-First-Out&#xff0c;FIFO&#xff09;的特性&#xff0c;类似于排队等候的场景。以下是队列的要点&#xff1a; 1. 定义&#xff1a;队列是一种线性数据结构&#xff0c;由一系列元素组成&#xff…...

Webgl利用缓冲区绘制三角形

什么是attribute 变量 它是一种存储限定符&#xff0c;表示定义一个attribute的全局变量&#xff0c;这种变量的数据将由外部向顶点着色器内传输&#xff0c;并保存顶点相关的数据&#xff0c;只有顶点着色器才能使用它 <!DOCTYPE html> <html lang"en"&g…...

正则表达式应用

正则表达式应用 正则匹配以{开头&#xff0c;以}结尾 \{.*?\}正则匹配以[开头&#xff0c;以]结尾 \[.*?\]校验数字的表达式 数字&#xff1a;^[0-9]*$n位的数字&#xff1a;^\d{n}$至少n位的数字&#xff1a;^\d{n,}$m-n位的数字&#xff1a;^\d{m,n}$零和非零开头的数字…...

9.4 【C语言】用指针处理链表

9.4.1 什么是链表 它是动态地进行存储分配的一种结构。 链表中各元素在内存中的地址是不连续的。要找某一元素&#xff0c;必须先找到上一个元素&#xff0c;根据它提供的下一元素地址才能找到下一个元素。 如果不提供“头指针”&#xff0c;则整个链表无法访问。 9.4.2 建…...

后端面试话术集锦第四篇:rabbitmq面试话术

🚗后端面试集锦目录 💖后端面试话术集锦第一篇:spring面试话术💖 💖后端面试话术集锦第二篇:spring boot面试话术💖 💖后端面试话术集锦第三篇:spring cloud面试话术💖 💖后端面试话术集锦第四篇:ElasticSearch面试话术💖 💖后端面试话术集锦第五篇:r…...

Linux目录结构与文件管理(01) (三)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 一、Linux 系统的组成 二、目录结构 根目录 三、文件管理 目录管理 总结 前言 今天主要学习了Linux的目录结构&#xff0c;主要是一些命令的含义和用法&am…...

OpenCV为老照片,黑白照片增加色彩

Colorful Image Colorization 图片的颜色上色&#xff0c;主要使用到了CNN卷积神经网络&#xff0c;作者在ImageNet数据集上进行了大量的训练&#xff0c;并将此问题使用在分类任务中&#xff0c;以解决问题的潜在的不确定性&#xff0c;并在训练时使用颜色重新平衡的损失函数方…...

HTML之VSCode简单配置与创建

目录 插件下载 然后输入源码&#xff1a; 使用 效果 插件下载 下载这个插件后可以直接运行&#xff1a; 然后创建一个文件&#xff1a; 然后输入源码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"…...

2023亿发一体化新零售POS收银解决方案,打造连锁门店经营新未来

在零售业不断演变的今天&#xff0c;门店形态繁多&#xff0c;收银环节的共通性与差异性并存。传统的通用解决方案已不适应多样化的业态需求&#xff0c;而在线上线下一体化的时代背景下&#xff0c;全渠道经营能力也成为商家的迫切需求。 一体化新零售POS收银系统&#xff0c…...

Android ---使用Jenkins 打包release版本不能安装或者安装后不显示APP

大家在用 Jenkins的时候&#xff0c;是不是会觉得很爽&#xff0c;因为他在用的过程中&#xff0c;是无脑的&#xff0c;毕竟一键触发&#xff01;&#xff01;&#xff01;&#xff01; 这边记录一个昨天&#xff0c;今天遇到的一个坑货问题&#xff0c;别人提交了所有代码&am…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...