基于LOF算法的异常值检测
目录
- LOF算法简介
- Sklearn官网LOF算法应用实例1
- Sklearn官网LOF算法应用实例2
- 基于LOF算法鸢尾花数据集异常值检测
- 读取数据
- 构造数据
- 可视化,画出可疑异常点
- LOF算法
LOF算法简介
LOF异常检测算法是一种基于密度的异常检测算法,基于密度的异常检测算法主要思想是:给定的样本数据集,对于数据集中的点,如果其局部领域的点都很密集,那么这个点大概率为正常的数据点;而如果这个点距离其相邻的点距离较远,也就是在一个局部领域的点密度较小,那么这个点可能为异常点。
Sklearn官网LOF算法应用实例1

clf.negative_outlier_factor_输出:array([ -0.98214286, -1.03703704, -73.36970899, -0.98214286])
绝对值越大于1则越有可能是异常。很明显101.1最有可能是异常。
Sklearn官网LOF算法应用实例2
导入包:

构造二维数据,以及一些离群点,并可视化:

LOF算法:

根据X_scores可视化,红色圈越大,该点越可能是异常点:

基于LOF算法鸢尾花数据集异常值检测
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from sklearn.neighbors import LocalOutlierFactor
from sklearn.datasets import load_iris
matplotlib.rcParams['font.sans-serif']=['SimHei'] # 用黑体显示中文
%matplotlib inline
读取数据
iris_data = load_iris()
iris_data.data[0:5,:]
array([[5.1, 3.5, 1.4, 0.2],[4.9, 3. , 1.4, 0.2],[4.7, 3.2, 1.3, 0.2],[4.6, 3.1, 1.5, 0.2],[5. , 3.6, 1.4, 0.2]])
# 数据规模
iris_data.data.shape
(150, 4)
# 特征
iris_data.feature_names
['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)']
# 查看类别
pd.DataFrame(iris_data.target).value_counts(), iris_data.target_names
(0 501 502 50dtype: int64,array(['setosa', 'versicolor', 'virginica'], dtype='<U10'))
构造数据
这里为方便可视化,只选取iris数据集中 ‘sepal width (cm)’ 和 ‘petal width (cm)’ 两个特征
data = iris_data.data[:, [1, 3]]
data = pd.DataFrame(data, columns=iris_data.feature_names[1:4:2])#['sepal width (cm)','petal width (cm)']
data.head()
| sepal width (cm) | petal width (cm) | |
|---|---|---|
| 0 | 3.5 | 0.2 |
| 1 | 3.0 | 0.2 |
| 2 | 3.2 | 0.2 |
| 3 | 3.1 | 0.2 |
| 4 | 3.6 | 0.2 |
可视化,画出可疑异常点
# 可视化两个特征'sepal width (cm)','petal width (cm)'
data.plot(kind="scatter", x="sepal width (cm)", y="petal width (cm)", c='r', figsize=(6,2))## 圈出可疑的异常点
plt.plot(2.3, 0.3, "ko", markersize=20, markerfacecolor="none")
plt.annotate("可能异常点", xy=(2.3, 0.48), xytext=(2, 0.75), arrowprops=dict(facecolor="blue"))plt.plot(3.8, 2.1, "ko", markersize=30, markerfacecolor="none")
plt.annotate("可能异常点", xy=(3.9, 1.9), xytext=(4, 1.5), arrowprops=dict(facecolor="blue"))plt.plot(4.4, 0.4, "ko", markersize=20, markerfacecolor="none")
plt.annotate("可能异常点", xy=(4.3, 0.5), xytext=(4.5, 1), arrowprops=dict(facecolor="blue"))
Text(4.5, 1, '可能异常点')

LOF算法
lof = LocalOutlierFactor(n_neighbors=30, metric="minkowski")
outlier_pre = lof.fit_predict(data.values)
"异常值数量:%d"%np.sum(outlier_pre==-1)
'异常值数量:7'
# 异常点
data[outlier_pre==-1]
| sepal width (cm) | petal width (cm) | |
|---|---|---|
| 15 | 4.4 | 0.4 |
| 33 | 4.2 | 0.2 |
| 41 | 2.3 | 0.3 |
| 60 | 2.0 | 1.0 |
| 109 | 3.6 | 2.5 |
| 117 | 3.8 | 2.2 |
| 131 | 3.8 | 2.0 |
scores = lof.negative_outlier_factor_# negative_outlier_factor_数值越大越正常;数值越小越不正常,可能是离群点scores = (scores.max()-scores)/(scores.max()-scores.min())
data.plot(kind="scatter", x="sepal width (cm)", y="petal width (cm)", c='r', figsize=(6,2))
plt.scatter(data["sepal width (cm)"], data["petal width (cm)" ], s=800*scores, edgecolors='k', facecolor="none",label="score")

相关文章:
基于LOF算法的异常值检测
目录 LOF算法简介Sklearn官网LOF算法应用实例1Sklearn官网LOF算法应用实例2基于LOF算法鸢尾花数据集异常值检测读取数据构造数据可视化,画出可疑异常点LOF算法 LOF算法简介 LOF异常检测算法是一种基于密度的异常检测算法,基于密度的异常检测算法主要思想…...
软考-系统可靠性原理
系统可靠性原理...
【Unity】【Amplify Shader Editor】ASE入门系列教程第二课 硬边溶解
黑色为0,白色为1 新建材质(不受光照影响) 拖入图片 设置 添加节点: 快捷键:K 组合通道:快捷键 V 完成图...
对神经网络理解的个人记录
对神经网络理解的个人记录 一、 神经网络为什么可以拟合函数、非线性函数二、 用向量表示特征(语音、文本、视频)。然后如何计算向量之间的相似度2.1 欧氏距离的计算2.2 点积运算2.3 余弦相似度计算一、 神经网络为什么可以拟合函数、非线性函数 第一个小短片:讲解神经网络为什…...
华为数通方向HCIP-DataCom H12-821题库(单选题:61-80)
第61题 关于 BGP 的Keepalive报文消息的描述,错误的是 A、Keepalive周期性的在两个BGP邻居之间发送 B、Keepalive报文主要用于对等路由器间的运行状态和链路的可用性确认 C、Keepalive 报文只包含一个BGP数据报头 D、缺省情况下,Keepalive 的时间间隔是180s 答案ÿ…...
Unity带有时效性的数据存储
Unity带有时效性的数据存储 引言 在Unity项目开发中,有时候会遇到带有时效性的数据存储,比如账号信息、token等,都是具有时效性的,这时候我们就需要在这些信息过期的时候将对应的信息作废。 实现 这个功能怎么实现呢ÿ…...
vue 子组件 emit传递事件和事件数据给父组件
1 子组件通过emit 函数 传递事件名init-complete 和 数据dateRange this.$emit(init-complete, dateRange) 2 父组件 创建方法 接收数据 handleInitComplete(dateRange) {} 3 父组件 创建的方法 和 子组件事件绑定 <component :is"currentComponent" :passOb…...
Zenity 简介
什么使 Zenity Zenity 是一个开源的命令行工具,它提供了一种简单的方式来创建图形化的用户界面(GUI)对话框,以与用户进行交互。它基于 GTK 库,可以在 Linux 和其他 UNIX-like 系统上使用。 Zenity 可以通过命令行或脚…...
c# 数组反转
一个数组是{1,2,3,4,5,6},把它变成{6,5,4,3,2,1} 1.创建一个和原数组长度类型一样的数组来接收反转的数据 private static void Main(string[] a…...
CSS学习笔记01
CSS笔记01 什么是CSS CSS(Cascading Style Sheets ):层叠样式表,也可以叫做级联样式表,是一种用来表现 HTML 或 XML 等文件样式的计算机语言。字体,颜色,边距,高度,宽度…...
数据结构,队列,顺序表队列,链表队列
队列是一种常见的数据结构,它具有先进先出(First-In-First-Out,FIFO)的特性,类似于排队等候的场景。以下是队列的要点: 1. 定义:队列是一种线性数据结构,由一系列元素组成ÿ…...
Webgl利用缓冲区绘制三角形
什么是attribute 变量 它是一种存储限定符,表示定义一个attribute的全局变量,这种变量的数据将由外部向顶点着色器内传输,并保存顶点相关的数据,只有顶点着色器才能使用它 <!DOCTYPE html> <html lang"en"&g…...
正则表达式应用
正则表达式应用 正则匹配以{开头,以}结尾 \{.*?\}正则匹配以[开头,以]结尾 \[.*?\]校验数字的表达式 数字:^[0-9]*$n位的数字:^\d{n}$至少n位的数字:^\d{n,}$m-n位的数字:^\d{m,n}$零和非零开头的数字…...
9.4 【C语言】用指针处理链表
9.4.1 什么是链表 它是动态地进行存储分配的一种结构。 链表中各元素在内存中的地址是不连续的。要找某一元素,必须先找到上一个元素,根据它提供的下一元素地址才能找到下一个元素。 如果不提供“头指针”,则整个链表无法访问。 9.4.2 建…...
后端面试话术集锦第四篇:rabbitmq面试话术
🚗后端面试集锦目录 💖后端面试话术集锦第一篇:spring面试话术💖 💖后端面试话术集锦第二篇:spring boot面试话术💖 💖后端面试话术集锦第三篇:spring cloud面试话术💖 💖后端面试话术集锦第四篇:ElasticSearch面试话术💖 💖后端面试话术集锦第五篇:r…...
Linux目录结构与文件管理(01) (三)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 一、Linux 系统的组成 二、目录结构 根目录 三、文件管理 目录管理 总结 前言 今天主要学习了Linux的目录结构,主要是一些命令的含义和用法&am…...
OpenCV为老照片,黑白照片增加色彩
Colorful Image Colorization 图片的颜色上色,主要使用到了CNN卷积神经网络,作者在ImageNet数据集上进行了大量的训练,并将此问题使用在分类任务中,以解决问题的潜在的不确定性,并在训练时使用颜色重新平衡的损失函数方…...
HTML之VSCode简单配置与创建
目录 插件下载 然后输入源码: 使用 效果 插件下载 下载这个插件后可以直接运行: 然后创建一个文件: 然后输入源码: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"…...
2023亿发一体化新零售POS收银解决方案,打造连锁门店经营新未来
在零售业不断演变的今天,门店形态繁多,收银环节的共通性与差异性并存。传统的通用解决方案已不适应多样化的业态需求,而在线上线下一体化的时代背景下,全渠道经营能力也成为商家的迫切需求。 一体化新零售POS收银系统,…...
Android ---使用Jenkins 打包release版本不能安装或者安装后不显示APP
大家在用 Jenkins的时候,是不是会觉得很爽,因为他在用的过程中,是无脑的,毕竟一键触发!!!! 这边记录一个昨天,今天遇到的一个坑货问题,别人提交了所有代码&am…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
