当前位置: 首页 > news >正文

门禁系统忘记登入密码,现在更换电脑如何迁移旧电脑门禁系统的数据

环境:

ivms-4200 v3.10.0.6_c

在这里插入图片描述

问题描述:

门禁系统忘记登入密码,现在更换电脑如何迁移旧电脑门禁系统的数据,旧电脑记住密码,忘了密码和密保了

解决方案:

1.前往海康官网下载4200客户端,在新电脑上安装
在这里插入图片描述

2.在旧电脑上4200里面新建另外一个管理员账户
在这里插入图片描述

3.然后在系统设置那导出配置文件,格式为zip的配置文件

在这里插入图片描述

4.在新电脑上4200上随便新建一个超级账户后,进入系统设置把旧电脑4200导出的配置文件导入到新系统

在这里插入图片描述成功后
在这里插入图片描述
5.最后再用之前旧电脑上申请的管理员账户登入进去,查看人员数据都ok

在这里插入图片描述现在用户管理只有之前见的一个管理员
在这里插入图片描述
6.最后测试刷卡正常

相关文章:

门禁系统忘记登入密码,现在更换电脑如何迁移旧电脑门禁系统的数据

环境: ivms-4200 v3.10.0.6_c 问题描述: 门禁系统忘记登入密码,现在更换电脑如何迁移旧电脑门禁系统的数据,旧电脑记住密码,忘了密码和密保了 解决方案: 1.前往海康官网下载4200客户端,在新电脑上安装 …...

初试Eureka注册中心

Eureka是spring cloud中的一个负责服务注册与发现的组件。遵循着CAP理论中的A(可用性)P(分区容错性)。一个Eureka中分为eureka server和eureka client。其中eureka server是作为服务的注册与发现中心。 搭建eureka服务 引入eureka依赖 引入SpringCloud为eureka提供的starter依…...

【趣味随笔】怎么维护自己的电脑?

📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…...

element 下拉组件获取对象

// 选择数据user:[{name:"小白",id:1,money:"100",love:"蛋糕"},{name:"小黑",id:2,money:"200",love:"奶茶"},{name:"小红",id:3,money:"300",love:"烧烤"},] <div><el…...

IDEA下SpringBoot指定环境、配置文件启动

1、idea下的SpringBoot启动&#xff1a;指定配置文件 Springboot项目有如下配置文件 主配置文件application.yml&#xff0c; 测试环境&#xff1a;application-test.yml 生产环境&#xff1a;application-pro.yml 开发环境&#xff1a;application-dev.yml 1.1.配置文件…...

python可视化matplotlib——绘制正弦和余弦

这是一个使用matplotlib库绘制正弦和余弦函数曲线的代码示例。代码中导入了需要的库&#xff0c;并设置了x轴和y轴的标签字体为华文楷体。然后&#xff0c;使用numpy生成一组x轴上的值t&#xff0c;并使用正弦函数生成对应的y轴值s&#xff0c;再使用余弦函数生成对应的y轴值z。…...

Day48|leetcode 198.打家劫舍、213.打家劫舍II、打家劫舍|||

leetcode 198.打家劫舍 题目链接&#xff1a;198. 打家劫舍 - 力扣&#xff08;LeetCode&#xff09; 视频链接&#xff1a;动态规划&#xff0c;偷不偷这个房间呢&#xff1f;| LeetCode&#xff1a;198.打家劫舍_哔哩哔哩_bilibili 题目概述 你是一个专业的小偷&#xff0c;…...

Mysql001:Mysql概述以及安装

前言&#xff1a;本课程将从头学习Mysql&#xff0c;以我的工作经验来说&#xff0c;sql语句真的太重要的&#xff0c;现在互联网所有的一切都是建立在数据上&#xff0c;因为互联网的兴起&#xff0c;现在的数据日月增多&#xff0c;每年都以翻倍的形式增长&#xff0c;对于数…...

如何调用api接口获取到商品数据

要调用API接口获取商品数据&#xff0c;需要进行以下步骤&#xff1a; 1.确定API接口 首先需要确定要使用的API接口&#xff0c;可以通过搜索引擎或者相关文档来查找适合的API接口。以淘宝开放平台为例&#xff0c;可以使用淘宝的商品信息查询API接口来获取商品数据。 2.注册…...

http请求方式过滤器与拦截器的区别

get:获取查询数据(查询)post:数据的提交&#xff0c;新增操作(增加)put:向服务端发送数据、改变信息&#xff0c;侧重点在于对数据的修改操作delete:数据库数据的删除head:一般用来判断类型、根据返回状态确定资源是否存在、资源是否更新以及更新的时间等 过滤器与拦截器的区别…...

大语言模型初学者指南 (2023)

大语言模型 (LLM) 是深度学习的一个子集&#xff0c;它正在彻底改变自然语言处理领域。它们是功能强大的通用语言模型&#xff0c;可以针对大量数据进行预训练&#xff0c;然后针对特定任务进行微调。这使得LLM能够拥有大量的一般数据。如果一个人想将LLM用于特定目的&#xff…...

日常生活小技巧 -- 单位换算

开发过程中经常需要需要单位换算的地方。 可以使用工具进行转换&#xff1a; 工具&#xff1a;单位转换 常用单位&#xff1a; 1、角度转换 1弧度&#xff08;rad&#xff09; 180/PI 度&#xff08;deg&#xff09; 57.29577951308232 度&#xff08;deg&#xff09; 1度…...

利用深度蛋白质序列嵌入方法通过 Siamese neural network 对 virus-host PPIs 进行精准预测【Patterns,2022】

研究背景&#xff1a; 病毒感染可以导致多种组织特异性损伤&#xff0c;所以 virus-host PPIs 的预测有助于新的治疗方法的研究&#xff1b;目前已有的一些 virus-host PPIs 鉴定或预测方法效果有限&#xff08;传统实验方法费时费力、计算方法要么基于蛋白结构或基因&#xff…...

opencv 车牌号的定位和识别+UI界面识别系统

目录 一、实现和完整UI视频效果展示 主界面&#xff1a; 识别结果界面&#xff1a;&#xff08;识别车牌颜色和车牌号&#xff09; 查看历史记录界面&#xff1a; 二、原理介绍&#xff1a; 车牌检测->图像灰度化->Canny边缘检测->膨胀与腐蚀 边缘检测及预处理…...

如何使用CSS实现一个自适应两栏布局,其中一栏固定宽度,另一栏自适应宽度?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 使用Float属性⭐ 使用Flexbox布局⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感…...

【PostgreSQL】导出数据库表(或序列)的结构和数据

导出 PostgreSQL 数据库的结构和数据 要导出 PostgreSQL 数据库的结构和数据&#xff0c;你可以使用 pg_dump 命令行工具。pg_dump 可以生成一个 SQL 脚本文件&#xff0c;其中包含了数据库的结构&#xff08;表、索引、视图等&#xff09;以及数据。下面是如何使用 pg_dump 导…...

Arcgis colorRmap

arcgis中colorRmap对应的名称&#xff1a; 信息来源&#xff1a;https://developers.arcgis.com/documentation/common-data-types/raster-function-objects.htm 在arcpy中使用方法&#xff1a; import arcpy cr arcpy.mp.ColorRamp("Yellow to Red")python中 ma…...

[JDK8环境下的HashMap类应用及源码分析] capacity实验

🌹作者主页:青花锁 🌹简介:Java领域优质创作者🏆、Java微服务架构公号作者😄、CSDN博客专家 🌹简历模板、学习资料、面试题库、技术互助 🌹文末获取联系方式 📝 系列文章目录 [Java基础] StringBuffer 和 StringBuilder 类应用及源码分析 [Java基础] 数组应用…...

【自动驾驶】TI SK-TDA4VM 开发板上电调试,AI Demo运行

1. 设备清单 TDA4VM Edge AI 入门套件【略】USB 摄像头(任何符合 V4L2 标准的 1MP/2MP 摄像头,例如:罗技 C270/C920/C922)全高清 eDP/HDMI 显示屏最低 16GB 高性能 SD 卡连接到互联网的 100Base-T 以太网电缆【略】UART电缆外部电源或电源附件要求: 标称输出电压:5-20VDC…...

基于LOF算法的异常值检测

目录 LOF算法简介Sklearn官网LOF算法应用实例1Sklearn官网LOF算法应用实例2基于LOF算法鸢尾花数据集异常值检测读取数据构造数据可视化&#xff0c;画出可疑异常点LOF算法 LOF算法简介 LOF异常检测算法是一种基于密度的异常检测算法&#xff0c;基于密度的异常检测算法主要思想…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...