当前位置: 首页 > news >正文

javacv基础02-调用本机摄像头并预览摄像头图像画面视频

引入架包:

  <dependency><groupId>org.openpnp</groupId><artifactId>opencv</artifactId><version>4.5.5-1</version></dependency><dependency><groupId>org.bytedeco</groupId><artifactId>ffmpeg-platform</artifactId><version>5.0-1.5.7</version></dependency>

调用本地视频头示例

package com.example.javacvstudy;import org.bytedeco.javacv.*;
import org.springframework.boot.test.context.SpringBootTest;
import javax.swing.*;@SpringBootTest
class ReadCanmen {public static void main(String[] args) throws FrameGrabber.Exception, InterruptedException {OpenCVFrameGrabber grabber = new OpenCVFrameGrabber(0);grabber.start();   //开始获取摄像头数据CanvasFrame canvas = new CanvasFrame("摄像头");//新建一个窗口canvas.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);canvas.setAlwaysOnTop(true);while(true){if(!canvas.isDisplayable()){//窗口是否关闭grabber.stop();//停止抓取System.exit(2);//退出break;}canvas.showImage(grabber.grab());//获取摄像头图像并放到窗口上显示, 这里的Frame frame=grabber.grab(); frame是一帧视频图像Thread.sleep(200);//50毫秒刷新一次图像}}}

运行效果:
在这里插入图片描述

注意:

1、maven依赖后,会导致整个项目工程打包发布后的体积变得十分巨大
原因是ffmpeg和opencv两个依赖默认会把android,ios,linux,macos,windows以及各自不同cpu芯片下,86/64等所有版本的Jar会全部依赖进来,项目打包后体积剧增500M+
解决方法也比较简单,只需要根据我们生产环境真实平台环境,选取其中1个Jar包就可以了。下面以Linux 64位操作系统为例,maven配置如下:

<!-- javacv依赖 -->
<dependency><groupId>org.bytedeco</groupId><artifactId>javacv</artifactId><version>4.5.5-1</version>
</dependency>
<!-- 引入ffmpeg依赖时单独把linux 64位的ffmpeg依赖引入即可 -->
<dependency><groupId>org.bytedeco.javacpp-presets</groupId><artifactId>ffmpeg</artifactId><version>5.0-1.5.7</version><classifier>linux-x86_64</classifier>
</dependency>
<!-- 引入ffmpeg依赖时单独把linux 64位的opencv依赖引入即可 -->
<dependency><groupId>org.bytedeco.javacpp-presets</groupId><artifactId>opencv</artifactId><version>4.5.5-1</version><classifier>linux-x86_64</classifier>
</dependency>

相关文章:

javacv基础02-调用本机摄像头并预览摄像头图像画面视频

引入架包&#xff1a; <dependency><groupId>org.openpnp</groupId><artifactId>opencv</artifactId><version>4.5.5-1</version></dependency><dependency><groupId>org.bytedeco</groupId><artifactId…...

【Nginx21】Nginx学习:FastCGI模块(三)缓冲区与响应头

Nginx学习&#xff1a;FastCGI模块&#xff08;三&#xff09;缓冲区与响应头 缓存相关的内容占了 FastCGI 模块将近一小半的内容&#xff0c;当然&#xff0c;用过的人可能不多。而今天的内容说实话&#xff0c;我平常也没怎么用过。第一个是缓冲区相关的知识&#xff0c;其实…...

正则表达式(常用字符简单版)

量词 字符类 边界匹配 分组和捕获 特殊字符 字符匹配 普通字符&#xff1a;普通字符按照字面意义进行匹配&#xff0c;例如匹配字母 "a" 将匹配到文本中的 "a" 字符。元字符&#xff1a;元字符具有特殊的含义&#xff0c;例如 \d 匹配任意数字字符&#xf…...

从零开始学习Python爬虫:详细指南

导言&#xff1a; 随着互联网的迅速发展&#xff0c;大量的数据可供我们利用。而Python作为一种简单易学且功能强大的编程语言&#xff0c;被广泛应用于数据分析和处理。学习Python爬虫技术&#xff0c;能够帮助我们从互联网上获取数据&#xff0c;并进行有效地分析和利用。本文…...

分布式计算框架:Spark、Dask、Ray

目录 什么是分布式计算 分布式计算哪家强&#xff1a;Spark、Dask、Ray 2 选择正确的框架 2.1 Spark 2.2 Dask 2.3 Ray 什么是分布式计算 分布式计算是一种计算方法&#xff0c;和集中式计算是相对的。 随着计算技术的发展&#xff0c;有些应用需要非常巨大的计算能力才…...

什么是伪类链(Pseudo-class Chaining)?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ Pseudo-class Chaining⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚…...

每日一题:leetcode 57 插入区间

给你一个 无重叠的 &#xff0c;按照区间起始端点排序的区间列表。 在列表中插入一个新的区间&#xff0c;你需要确保列表中的区间仍然有序且不重叠&#xff08;如果有必要的话&#xff0c;可以合并区间&#xff09;。 示例 1&#xff1a; 输入&#xff1a;intervals [[1,3…...

第五节:实现自己的第一个environment

本专栏是强化学习运用在买卖股票之上的入门学习内容。 主要解决强化学习代码落地和代码实践,不需要学习相关数学原理,直观简单的带领读者入门强化学习炒股。 查看本专栏完整内容,请访问:https://blog.csdn.net/windanchaos/category_12391143.html 本文发布地址:https://b…...

无套路,财务数据分析-多组织损益表分析分享

在报表众多的财务数据分析中&#xff0c;损益表是老板们最关注的报表&#xff0c;特别是当有多组织时&#xff0c;损益表的分析就变得更加重要了。以前受限于数据分析工具&#xff0c;做损益表分析时很难做到多维度灵活分析&#xff0c;但随着BI数据可视化工具的发展&#xff0…...

Java并发编程第6讲——线程池(万字详解)

Java中的线程池是运用场景最多的并发框架&#xff0c;几乎所有需要异步或并发执行任务的程序都可以使用线程池&#xff0c;本篇文章就详细介绍一下。 一、什么是线程池 定义&#xff1a;线程池是一种用于管理和重用线程的技术&#xff08;池化技术&#xff09;&#xff0c;它主…...

AI + Milvus:将时尚应用搭建进行到底

在上一篇文章中&#xff0c;我们学习了如何利用人工智能技术&#xff08;例如开源 AI 向量数据库 Milvus 和 Hugging Face 模型&#xff09;寻找与自己穿搭风格相似的明星。在这篇文章中&#xff0c;我们将进一步介绍如何通过对上篇文章中的项目代码稍作修改&#xff0c;获得更…...

归并排序(Java 实例代码)

目录 归并排序 一、概念及其介绍 二、适用说明 三、过程图示 四、Java 实例代码 MergeSort.java 文件代码&#xff1a; 归并排序 一、概念及其介绍 归并排序&#xff08;Merge sort&#xff09;是建立在归并操作上的一种有效、稳定的排序算法&#xff0c;该算法是采用分…...

【VUE】数字动态变化到目标值-vue-count-to

vue-count-to是一个Vue组件&#xff0c;用于实现数字动画效果。它可以用于显示从一个数字到另一个数字的过渡动画。 插件名&#xff1a;vue-count-to 官方仓库地址&#xff1a;GitHub - PanJiaChen/vue-countTo: Its a vue component that will count to a target number at a…...

Mysql /etc/my.cnf参数详解(二)

#buffer相关 #buffer pool根据实际内存大小调整,标准为物理内存的50% innodb_buffer_pool_size15996M //默认值128M&#xff0c;innodb_buffer_pool_size | 134217728 key_buffer_size 33554432 #根据物理内存大小设置 确保每个instance内的内存2G左右 <5000 1,>5000 &…...

AUTOSAR规范与ECU软件开发(实践篇)6.10AUTOSAR操作系统概念与配置方法介绍(下)

目录 2、 RTA-OS工程创建 3、 AUTOSAR操作系统配置方法 (1) 描述文件导入 (2) Counter配置...

蓝牙 - 经典蓝牙物理信道介绍

物理信道有多种类型。所有蓝牙物理信道的特点都是一组物理层的频率与时间参数相结合&#xff0c;并受到空间因素的限制。对于基本的和经过调整的蓝牙组网(piconet)所用物理信道&#xff0c;跳频用于定期改变频率&#xff0c;以减少干扰影响&#xff0c;同时也是出于监管原因。 …...

性能测试中未做集群时,在登入中已经保存了登入的session,但可能会出现在不同的服务器上显示登入失败

Session未进行集群共享时&#xff0c;则会出现服务器2&#xff0c;未登录...

Python环境下载安装使用

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…...

图像扭曲之波浪扭曲

源码&#xff1a; void wave_sine(cv::Mat& src,cv::Mat& dst,double amplitude,double wavelength) {dst.create(src.rows, src.cols, CV_8UC3);dst.setTo(0);double xAmplitude amplitude;double yAmplitude amplitude;double xWavelength wavelength;double yWa…...

《自动驾驶与机器人中的SLAM技术》之GNSS相关基础知识总结

简介 本篇基于对《自动驾驶与机器人中的SLAM技术》中的GNSS定位相关基础知识进行总结用于备忘 知识点整理 GNSS(全球卫星导航系统)定位原理 GNSS 通过测量自身与地球周围各卫星的距离来确定自身的位置 , 而与卫星的距离主要是通过测量时间间隔来确定的 GNSS与GPS的关系 GPS(…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...