蓝牙 - 经典蓝牙物理信道介绍
物理信道有多种类型。所有蓝牙物理信道的特点都是一组物理层的频率与时间参数相结合,并受到空间因素的限制。对于基本的和经过调整的蓝牙组网(piconet)所用物理信道,跳频用于定期改变频率,以减少干扰影响,同时也是出于监管原因。
在 BR/EDR 核心系统中,对等(peer)设备使用共享物理信道进行通信。为此,它们的收发器需要同时调谐到相同的物理层频率,并且需要在彼此距离的合适范围内。由于射频载波的数量有限,而且许多蓝牙设备可能在同一空间和时间区域内独立运行,因此很有可能出现两个独立蓝牙设备的收发器调谐到相同射频载波的情况,从而导致物理信道碰撞。为了减少这种碰撞带来的不良影响,物理信道上的每次传输都以一个接入代码开始,该代码被设置为与设备的物理信道相关代码。该信道接入码是物理信道的属性。接入码存在于每个传输数据包的开头。接入码用于定时同步、偏移补偿、寻呼和查询。
定义了多个 BR/EDR 物理通道。每个通道都经过优化,用于不同的目的:
-
其中两个物理信道(基本 piconet 信道和适配 piconet 信道)用于连接设备之间的通信,并与特定 piconet 相关联。
-
其他 BR/EDR 物理信道用于发现(查询扫描信道)和连接(寻呼扫描信道)蓝牙设备。
-
设备使用同步扫描物理信道获取无连接从属广播物理链路的时序和频率信息,或恢复当前 piconet 时钟。
蓝牙设备在任何时候都只能使用一个 BR/EDR 物理通道。为了支持多个并发操作,设备在信道之间使用了时分复用技术。
A number of types of physical channel are defined. All Bluetooth physical channels are characterized by a set of PHY frequencies combined with temporal parameters and restricted by spatial considerations. For the basic and adapted piconet physical channels frequency hopping is used to change frequency periodically to reduce the effects of interference and for regulatory reasons.
In the BR/EDR core system, peer devices use a shared physical channel for communication. To achieve this their transceivers need to be tuned to the same PHY frequency at the same time, and they need to be within a nominal range of each other. Given that the number of RF carriers is limited and that many Bluetooth devices may be operating independently within the same spatial and temporal area there is a strong likelihood of two independent Bluetooth devices having their transceivers tuned to the same RF carrier, resulting in a physical channel collision. To mitigate the unwanted effects of this collision each transmission on a physical channel starts with an access code that is used as a correlation code by devices tuned to the physical channel. This channel access code is a property of the physical channel. The access code is present at the start of every transmitted packet. Access code is used for timing synchronization, offset compensation, paging and inquiry.
Several BR/EDR physical channels are defined. Each is optimized and used for a different purpose.
* Two of these physical channels (the basic piconet channel and adapted piconet channel) are used for communication between connected devices and are associated with a specific piconet.
* Other BR/EDR physical channels are used for discovering (the inquiry scan channel) and connecting (the page scan channel) Bluetooth devices.
* The synchronization scan physical channel is used by devices to obtain timing and frequency information about the Connectionless Slave Broadcast physical link or to recover the current piconet clock.
A Bluetooth device can only use one BR/EDR physical channel at any given time. In order to support multiple concurrent operations the device uses timedivision multiplexing between the channels.
基础组网信道 (Basic piconet channel)
在正常运行期间,基本piconet 通道用于连接设备之间的通信。
-
特点
-
-
基本 piconet 信道的特点是通过 PHY 信道进行伪随机序列跳转。跳转序列对 piconet 来说是唯一的,由主设备的蓝牙设备地址决定。跳转序列的相位由主设备的蓝牙时钟决定。所有参与 piconet 的蓝牙设备都与信道保持时间和跳频同步。
-
信道被划分为多个时隙,每个时隙对应一个物理层跳频。连续的跳频对应不同的物理层跳频。时隙根据 piconet 主站的蓝牙时钟编号。数据包由参与 piconet 的蓝牙设备传输,并以时隙边界为起点。每个数据包以信道访问代码开始,该代码来自 piconet 主设备的蓝牙设备地址。
-
在基本 piconet 信道上,主设备控制着信道的访问。主设备只在偶数时隙开始传输。主站传输的数据包与时隙起始点保持一致,并确定 piconet 时序。主站传输的数据包最多可占用五个时隙,具体取决于数据包的类型。
-
-
拓扑结构
一个基本的 piconet 信道可由任意数量的蓝牙设备共享,仅受 piconet 主设备可用资源的限制。只有一个设备是 piconet 主设备,所有其他设备都是 piconet 从设备。所有通信都在主设备和从设备之间进行。piconet 通道上的从设备之间不能直接通信。
不过,一个 piconet 可支持的逻辑传输数量是有限制的。这意味着,虽然共享一个信道的蓝牙设备的数量在理论上没有限制,但这些设备中能够主动与主设备交换数据的数量是有限制的。
Basic piconet channel
The basic piconet channel is used for communication between connected devices during normal operation.
Characteristics
* The basic piconet channel is characterized by a pseudo-random sequence hopping through the PHY channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master. The phase in the hopping sequence is determined by the Bluetooth clock of the master. All Bluetooth devices participating in the piconet are time- and hop synchronized to the channel.
* The channel is divided into time slots where each slot corresponds to an PHY hop frequency. Consecutive hops correspond to different PHY hop frequencies. The time slots are numbered according to the Bluetooth clock of the piconet master. Packets are transmitted by Bluetooth devices participating in the piconet aligned to start at a slot boundary. Each packet starts with the channel access code, which is derived from the Bluetooth device address of the piconet master.
* On the basic piconet channel the master controls access to the channel. The master starts its transmission in even-numbered time slots only. Packets transmitted by the master are aligned with the slot start and define the piconet timing. Packets transmitted by the master may occupy up to five time slots depending on the packet type.
Topology
A basic piconet channel may be shared by any number of Bluetooth devices, limited only by the resources available on the piconet master device. Only one device is the piconet master, all others being piconet slaves. All communication is between the master and slave devices. There is no direct communication between slave devices on the piconet channel.
There is, however, a limitation on the number of logical transports that can be supported within a piconet. This means that although there is no theoretical limit to the number of Bluetooth devices that share a channel there is a limit to the number of these devices that can be actively involved in exchanging data with the master.
适配 piconet 信道 (Adapted piconet channel)
基本 piconet 通道用于连接设备之间的正常通信。适配 piconet 信道与基本 piconet 通道有两个不同之处:
1, 从设备传输的频率与主设备在前一次传输中使用的频率相同。换句话说,主设备和随后的从设备数据包之间不需要重新计算频率。
2, 调整后的 piconet 信道可基于少于全部 79 个频率。一些频率可被标记为 "unused",从而被排除在跳频模式之外。79 个频率的其余部分则包括在内。这两套频率集合的区别就是,当基本伪随机跳频序列选择了一个unused的频率时,会从used的频率中选择一个频率替换。在同一个适配piconet信道上,不同的物理链路所使用的频率集可能不同。
适配 piconet 信道是指连接设备之间的蓝牙通信中使用的一种机制。在蓝牙设备网络 piconet 中,适配 piconet 信道可确保从设备传输所用的频率与主设备前一个传输所用的频率相同。这种机制有助于在 piconet 内保持同步和高效通信。
Adapted piconet channel
The basic piconet channel is used for communication between connected devices during normal operation. It differs from the basic piconet channel in two ways:
1. the frequency on which a slave transmits is the same as the frequency used by its master in the preceding transmission. In other words the frequency is not recomputed between master and subsequent slave packets.
2. the adapted piconet channel may be based on fewer than the full 79 frequencies. A number of frequencies may be excluded from the hopping pattern by being marked as “unused”. The remainder of the 79 frequencies are included. The two sequences are the same except that whenever the basic pseudo-random hopping sequence selects an unused frequency, it is replaced with an alternative chosen from the used set. The set of frequencies used may vary between different physical links on the same adapted piconet channel.
The adapted piconet channel refers to a mechanism used in Bluetooth communication between connected devices. In a piconet, which is a network of Bluetooth devices, the adapted piconet channel ensures that the frequency used by the slave device for transmission is the same as the frequency used by the preceding master device transmission. This mechanism helps maintain synchrony and efficient communication within the piconet.
查询扫描通道(Inquiry scan channel)
-
为使设备被发现,需要使用查询扫描信道。可被发现的设备在其查询扫描信道上监听查询请求,然后发送对该请求的响应。
-
为了让一个设备发现其他设备,它会以一种伪随机方式遍历(跳转)所有可能的查询扫描信道频率,在每个频率上发送查询请求并监听任何响应。
特点:
-
查询扫描信道采用较慢的跳频模式,并使用访问代码来区分使用不同物理信道的两个同地设备偶尔占用同一无线电频率的情况。
-
查询扫描信道上使用的访问代码来自所有蓝牙设备共享的一组保留查询访问代码。其中一个访问代码用于一般查询,另外一些访问代码保留用于有限查询。每个设备都可以访问多个不同的查询扫描通道。由于所有这些信道都有相同的跳频模式,如果一个设备能同时关联多个访问代码,它就可以同时占用一个以上的查询扫描信道。
-
使用其中一个查询扫描信道的设备在该信道上一直处于被动状态,直到收到另一个蓝牙设备在该信道上发出的查询信息。这可以通过相应的查询访问代码来识别。然后,查询扫描设备将按照查询响应程序向查询设备返回响应。
-
为了发现其他蓝牙设备,设备会使用查询扫描通道发送查询请求。由于事先不知道要发现的设备,因此无法知道查询扫描信道的确切特性。
-
设备会利用查询扫描信道跳频次数较少、跳频速度较慢的特点。查询设备在每个查询扫描跳频上发送查询请求,并等待查询响应。由于传输速度较快,查询设备可以在较短时间内覆盖所有查询扫描频率。
拓扑结构:
发起查询的设备和可发现设备使用简单的数据包交换来实现查询功能。在此过程中形成的拓扑结构是一个简单而短暂的点对点连接。
Inquiry scan channel
* In order for a device to be discovered, an inquiry scan channel is used. A discoverable device listens for inquiry requests on its inquiry scan channel and then sends a response to that request.
* In order for a device to discover other devices, it iterates (hops) through all possible inquiry scan channel frequencies in a pseudo-random fashion, sending an inquiry request on each frequency and listening for any response.
Characteristics
* Inquiry scan channels follow a slower hopping pattern and use an access code to distinguish between occasional occupancy of the same radio frequency by two co-located devices using different physical channels.
* The access code used on the inquiry scan channel is taken from a reserved set of inquiry access codes that are shared by all Bluetooth devices. One access code is used for general inquiries, and a number of additional access codes are reserved for limited inquiries. Each device has access to a number of different inquiry scan channels. As all of these channels share an identical hopping pattern, a device may concurrently occupy more than one inquiry scan channel if it is capable of concurrently correlating more than one access code.
* A device using one of its inquiry scan channels remains passive on that channel until it receives an inquiry message on this channel from another Bluetooth device. This is identified by the appropriate inquiry access code. The inquiry scanning device will then follow the inquiry response procedure to return a response to the inquiring device.
* In order for a device to discover other Bluetooth devices it uses the inquiry scan channel to send inquiry requests. As it has no prior knowledge of the devices to discover, it cannot know the exact characteristics of the inquiry scan channel.
* The device takes advantage of the fact that inquiry scan channels have a reduced number of hop frequencies and a slower rate of hopping. The inquiring device transmits inquiry requests on each of the inquiry scan hop frequencies and listens for an inquiry response. Transmissions are done at a faster rate, allowing the inquiring device to cover all inquiry scan frequencies in a reasonably short time period.
Topology
Inquiring and discoverable devices use a simple exchange of packets to fulfill the inquiring function. The topology formed during this transaction is a simple and transient point-to-point connection.
寻呼扫描信道(Page scan channel)
-
一个可连接设备(准备接受连接的设备)在其寻呼扫描信道上监听寻呼请求,一旦收到,就会与该设备进行一系列信息交换。
-
一个设备要连接到另一个设备,需要以一种伪随机方式遍历(跳转)所有寻呼扫描信道频率,在每个频率上发送寻呼请求并监听响应。
特点
-
寻呼扫描信道使用从扫描设备的蓝牙设备地址中提取的访问代码来识别信道上的通信。寻呼扫描信道使用的跳频速率比基本和适配 piconet 信道的跳频速率慢。跳频选择算法使用扫描设备的蓝牙设备时钟作为输入。
-
使用寻呼扫描信道的设备在收到另一个蓝牙设备的寻呼请求之前一直处于被动状态。这可以通过寻呼扫描信道访问代码来识别。然后,两台设备将按照寻呼程序建立连接。在成功完成寻呼程序后,两台设备将切换到基本的 piconet 信道,该信道的特点是寻呼设备为主设备。
-
为了与另一个蓝牙设备连接,设备会使用目标设备的寻呼扫描信道来发送寻呼请求。如果寻呼设备不知道目标设备寻呼扫描信道的相位,就无法知道目标设备当前的跳频。寻呼设备在每个寻呼扫描跳频上发送页面请求,并等待寻呼响应。这样做的跳频速度较快,使寻呼设备能在合理的短时间内覆盖所有寻呼扫描频率。
-
寻呼设备可能对目标设备的蓝牙时钟有一定的了解(在两台设备之前的查询交易中显示,或由于之前与设备共同参与 piconet 的结果),在这种情况下,它能够预测目标设备寻呼扫描信道的相位。它可以利用这一信息优化寻呼和寻呼扫描过程的同步,加快连接的建立。
拓扑结构
寻呼和可连接设备通过简单的数据包交换来实现寻呼功能。在此过程中形成的拓扑结构是一个简单而短暂的点对点连接。
Page scan channel
* A connectable device (one that is prepared to accept connections) listens for a page request on its page scan channel and, once received, enters into a sequence of exchanges with this device.
* In order for a device to connect to another device, it iterates (hops) through all page scan channel frequencies in a pseudorandom fashion, sending a page request on each frequency and listening for a response.
Characteristics
* The page scan channel uses an access code derived from the scanning device’s Bluetooth device address to identify communications on the channel. The page scan channel uses a slower hopping rate than the hop rate of the basic and adapted piconet channels. The hop selection algorithm uses the Bluetooth device clock of the scanning device as an input.
* A device using its page scan channel remains passive until it receives a page request from another Bluetooth device. This is identified by the page scan channel access code. The two devices will then follow the page procedure to form a connection. Following a successful conclusion of the page procedure both devices switch to the basic piconet channel that is characterized by having the paging device as master.
* In order for a device to connect to another Bluetooth device it uses the page scan channel of the target device in order to send page requests. If the paging device does not know the phase of the target device’s page scan channel it therefore does not know the current hop frequency of the target device. The paging device transmits page requests on each of the page scan hop frequencies and listens for a page response. This is done at a faster hop rate, allowing the paging device to cover all page scan frequencies in a reasonably short time period.
* The paging device may have some knowledge of the target device’s Bluetooth clock (indicated during a previous inquiry transaction between the two devices, or as a result of a previous involvement in a piconet with the device), in this case it is able to predict the phase of the target device’s page scan channel. It may use this information to optimize the synchronization of the paging and page scanning process and speed up the formation of the connection.
Topology
Paging and connectable devices use a simple exchange of packets to fulfill the paging function. The topology formed during this transaction is a simple and transient point-to-point connection.
同步扫描信道(Synchronization scan channel)
为了接收 CSB 逻辑传输上发送的数据包,设备必须首先获取这些数据包的时序和频率信道的信息。如果设备错过了粗时钟(Coarse Clock Adjustment)调整通知,则需要恢复当前的 piconet 时钟。同步扫描信道就是为此而提供的。扫描设备在同步扫描通道上监听同步列车数据包。一旦收到同步列车数据包,设备就可以停止监听同步列车数据包,因为它已经掌握了开始接收 CSB 逻辑传输上发送的数据包或恢复 piconet 时钟所需的时序和频率信息。
特点
同步扫描信道使用从同步列车发送器的蓝牙设备地址导出的访问代码来识别信道上的同步列车数据包。一旦收到同步列车数据包,扫描 BR/EDR 控制器就可以开始接收 CSB 逻辑传输上发送的数据包,具体取决于主机的需求和任何适用的配置文件。
拓扑结构
扫描过程中形成的拓扑结构是瞬时和一点对多点的。可以有数量不限的扫描设备同时接收来自同一同步列车发送器的同步列车数据包。
Synchronization scan channel
In order to receive packets sent on the CSB logical transport, a device must first obtain information about the timing and frequency channels of those packets. If a device misses a Coarse Clock Adjustment notification, it needs to recover the current piconet clock. The synchronization scan channel is provided for these purposes. A scanning device listens for synchronization train packets on the synchronization scan channel. Once a synchronization train packet is received, the device may stop listening for synchronization train packets because it has the timing and frequency information necessary to start receiving packets sent on the CSB logical transport or to recover the piconet clock.
Characteristics
The synchronization scan channel uses an access code derived from the Bluetooth device address of the synchronization train transmitter to identify synchronization train packets on the channel. Once a synchronization train packet is received, the scanning BR/EDR Controller may start receiving packets sent on the CSB logical transport, depending on the needs of the Host and any applicable profile(s).
Topology
The topology formed during this scan is transient and point-to-multipoint. There can be an unlimited number of scanning devices simultaneously receiving synchronization train packets from the same synchronization train transmitter.
参考:
1,Overview of BR/EDR Physical Channels
BR/EDR channels
相关文章:
蓝牙 - 经典蓝牙物理信道介绍
物理信道有多种类型。所有蓝牙物理信道的特点都是一组物理层的频率与时间参数相结合,并受到空间因素的限制。对于基本的和经过调整的蓝牙组网(piconet)所用物理信道,跳频用于定期改变频率,以减少干扰影响,同时也是出于监管原因。 …...

性能测试中未做集群时,在登入中已经保存了登入的session,但可能会出现在不同的服务器上显示登入失败
Session未进行集群共享时,则会出现服务器2,未登录...

Python环境下载安装使用
天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…...

图像扭曲之波浪扭曲
源码: void wave_sine(cv::Mat& src,cv::Mat& dst,double amplitude,double wavelength) {dst.create(src.rows, src.cols, CV_8UC3);dst.setTo(0);double xAmplitude amplitude;double yAmplitude amplitude;double xWavelength wavelength;double yWa…...

《自动驾驶与机器人中的SLAM技术》之GNSS相关基础知识总结
简介 本篇基于对《自动驾驶与机器人中的SLAM技术》中的GNSS定位相关基础知识进行总结用于备忘 知识点整理 GNSS(全球卫星导航系统)定位原理 GNSS 通过测量自身与地球周围各卫星的距离来确定自身的位置 , 而与卫星的距离主要是通过测量时间间隔来确定的 GNSS与GPS的关系 GPS(…...

【前端|CSS系列第4篇】面试官:你了解居中布局吗?
欢迎来到前端CSS系列的第4篇教程!如果你正在寻找一种简单而又强大的前端技术,以使你的网页和应用程序看起来更加专业和美观,那么居中布局绝对是你不能错过的重要知识。 在前端开发中,实现居中布局是一项必备技能,无论…...
安全物理环境技术测评要求项
1.物理选择-保证等级保护对象物理安全的前提和基础 1-0/2-2/3-2/4-2(级别-要求项数量) a)具备防震、防风、防雨能力 b)避免顶层或地下室,否则应加强防水、防潮措施 测评实施重点: 1)机房场地所在…...

SAP MTS案例教程PP生产前台操作
目录 本章介绍 2 生产订单相关操作 3 批量查询生产订单 3 单个显示生产任务单 5 生产订单批量可用性检查 6 显示短缺部件信息 8 修改生产订单 9 重读工单计划主数据 11 单个下达生产订单 12 批量下达生产订单 13 非倒冲生产方式操作过程 15 多个工单批量发料 15 单个工单发料 1…...
Celery task 执行报错 TypeError: Object of type set is not JSON serializable 问题分析处理
情况描述: 定义了新的shared_task推送到生产环境后,发现无法执行,会报错set对象无法序列化,报错内容如下: Traceback (most recent call last):File "/tmp/venv/lib64/python3.6/site-packages/kombu/serializati…...

【大魔王送书第一期】《一名阿里服务端开发工程师的进阶之路》
一、前言 目前,资讯、社交、游戏、消费、出行等丰富多彩的互联网应用已经渗透到了人们生活和工作的方方面面,正深刻改变着信息时代。随着用户规模的增长和应用复杂度的上升,服务端面临的技术挑战越来越严峻。在头部互联网企业,服…...

[FPGA IP系列] BRAM IP参数配置与使用示例
FPGA开发中使用频率非常高的两个IP就是FIFO和BRAM,上一篇文章中已经详细介绍了Vivado FIFO IP,今天我们来聊一聊BRAM IP。 本文将详细介绍Vivado中BRAM IP的配置方式和使用技巧。 一、BRAM IP核的配置 1、打开BRAM IP核 在Vivado的IP Catalog中找到B…...
react ts
一、项目搭建 1、创建项目 使用vite生成项目 npx create-react-app react-ts-project --template typescript 启动项目 yarn start 删除无用组件 2、设计目录结构 资源说明http网络请求assets公共资源components组件router路由配置utils工具模块store状态机App.tsx应用…...
配置MySQL
配置MySQL_5.7.16 一级目录2.1.1 安装包准备2.1.2 安装MySQL2.1.3 配置MySQL 一级目录 2.1.1 安装包准备 1)将安装包和JDBC驱动上传到/opt/software,共计6个 01_mysql-community-common-5.7.16-1.el7.x86_64.rpm 02_mysql-community-libs-5.7.16-1.el…...

GFPGAN 集成Flask 接口化改造
GFPGAN是一款腾讯开源的人脸高清修复模型,基于github上提供的demo,可以简单的集成Flask以实现功能接口化。 GFPGAN的安装,Flask的安装请参见其他文章。 如若使用POSTMAN进行测试,需使用POST方式,form-data的请求体&am…...

vue数字输入框
目录 1.emitter.JS function broadcast (componentName, eventName, params) {this.$children.forEach(child > {var name child.$options.componentNameif (name componentName) {child.$emit.apply(child, [eventName].concat(params))} else {broadcast.apply(child, …...

JavaScript—BOM
BOM是什么? Browser Object Model是浏览器对象模型 官方:浏览器对象模型提供了独立于内容的、可以与浏览器窗口进行互动的对象结构,BOM由多个对象构成,其中代表浏览器窗口的window对象是BOM的顶层对象,其他对象都是该…...
C# SocketException(0x2746) asp.net一个现有的连接被远程主机强行关闭
问题原因 如果网页能正常访问,那就是TLS版本支持的问题。 我遇到的问题是: 项目用的是NET Framework 4.6.1,但是 learn.microsoft.com 提到 NET Framework 4.6及更早版本 不支持 TLS 1.1 和 TLS 1.2。 NET Framework 4.6.2 及更高版本 支持 …...

博客系统后端(项目系列2)
目录 前言 : 1.准备工作 1.1创建项目 1.2引入依赖 1.3创建必要的目录 2.数据库设计 2.1博客数据 2.2用户数据 3.封装数据库 3.1封装数据库的连接操作 3.2创建两个表对应的实体类 3.3封装一些必要的增删改查操作 4.前后端交互逻辑的实现 4.1博客列表页 …...

随机化快速排序(Java 实例代码)
随机化快速排序 一、概念及其介绍 快速排序由 C. A. R. Hoare 在 1960 年提出。 随机化快速排序基本思想:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数…...

JVM 垃圾收集
垃圾收集 分代理论Java 堆的内存分区不同分代收集垃圾收集算法 分代理论 弱分代假说:绝大多数对象都是朝生夕灭,即绝大多数对象都是用完很快需要销毁的。强分代假说:熬过多次垃圾收集过程的对象就越难以消亡,即如果对象经过多次垃…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...

STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

Unity UGUI Button事件流程
场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...

企业大模型服务合规指南:深度解析备案与登记制度
伴随AI技术的爆炸式发展,尤其是大模型(LLM)在各行各业的深度应用和整合,企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者,还是积极拥抱AI转型的传统企业,在面向公众…...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...