当前位置: 首页 > news >正文

【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(2,常见随机变量及其分布 | 随机变量函数的分布)

文章目录

  • 引言
  • 三、常见的随机变量及其分布
    • 3.1 常见的离散型随机变量及其分布律
      • (一)(0-1)分布
      • (二)二项分布
      • (三)泊松分布
      • (四)几何分布
      • (五)超几何分布
    • 3.2 常见的连续型随机变量及其概率密度
      • (一)均匀分布
      • (二)指数分布
      • (三)正态分布
  • 四、随机变量函数的分布
    • (一)离散型随机变量函数的分布
    • (二)连续型随机变量函数的分布


引言

承接前文,我们继续学习第二章,一维随机变量及其分布的第二部分内容。


三、常见的随机变量及其分布

3.1 常见的离散型随机变量及其分布律

(一)(0-1)分布

设随机变量 X X X 的可能取值为 0 或 1 ,且其概率为 P P P { X = 1 X=1 X=1 } = p , =p, =p, P P P { X = 0 X=0 X=0 } = 1 − p ( 0 < p < 1 =1-p(0 < p < 1 =1p(0<p<1 ,称 X X X 服从(0-1)分布,记为 X ∼ B ( 1 , p ) . X \sim B(1,p). XB(1,p).

(二)二项分布

设随机变量 X X X 的分布律为 P P P { X = k X=k X=k } = C n k p k ( 1 − p ) n − k =C_n^kp^k(1-p)^{n-k} =Cnkpk(1p)nk ,其中 k = 0 , 1 , 2 , … , n , 0 < p < 1 , k=0,1,2,\dots,n,0 < p < 1, k=0,1,2,,n,0<p<1, 称随机变量 X X X 服从二项分布,记为 X ∼ B ( n , p ) . X \sim B(n,p). XB(n,p).

回忆一下第一章的伯努利概型,也是二项分布。

(三)泊松分布

设离散型随机变量 X X X 的分布律为 P { X = k } = λ k k ! e − λ , P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda}, P{X=k}=k!λkeλ, 其中, λ > 0 , k = 0 , 1 , 2 , … , n , \lambda > 0,k=0,1,2,\dots,n, λ>0,k=0,1,2,,n, 称随机变量 X X X 服从参数为 λ \lambda λ 的泊松分布,记为 X ∼ P ( λ ) . X \sim P(\lambda). XP(λ).

(四)几何分布

设离散型随机变量 X X X 的分布律为 P { X = k } = p ( 1 − p ) k − 1 , P\{X=k\}=p(1-p)^{k-1}, P{X=k}=p(1p)k1, 其中, k = 1 , 2 , … , n , k=1,2,\dots,n, k=1,2,,n, 称随机变量 X X X 服从几何分布,记为 X ∼ G ( p ) . X \sim G(p). XG(p).

服从几何分布的随机变量 X X X 可以这么理解:设伯努利试验中只有两种结果 A , A ‾ , P ( A ) = p A,\overline{A},P(A)=p A,A,P(A)=p ,则 X X X 表示伯努利试验中 A A A 首次发生时的试验次数。
比如, X = 2 X=2 X=2 ,表示试验做了两次才第一次发生,也就是第一次试验没发生,第二次试验发生; X = n X=n X=n ,表示前 n − 1 n-1 n1 次试验没发生,第 n n n 次试验发生。这样就好理解了,公式也一下就记得住。

(五)超几何分布

设离散型随机变量 X X X 的分布律为 P { X = k } = C M k ⋅ C N − M n − k C N n , P\{X=k\}=\frac{C_M^k \cdot C_{N-M}^{n-k}}{C_N^n}, P{X=k}=CNnCMkCNMnk, 其中, M , N , k , n M,N,k,n M,N,k,n 为自然数,且 M ≤ N , m a x { N − M , 0 } ≤ k ≤ m i n { M , n } , n ≤ N M \leq N,max\{N-M,0\} \leq k \leq min\{M,n\},n \leq N MN,max{NM,0}kmin{M,n},nN , 称随机变量 X X X 服从超几何分布,记为 X ∼ H ( n , M , N ) . X \sim H(n,M,N). XH(n,M,N).

3.2 常见的连续型随机变量及其概率密度

(一)均匀分布

设随机变量 X X X 的概率密度为 f ( x ) = { 1 b − a , a ≤ x ≤ b 0 , e l s e , f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & else \\ \end{cases}, f(x)={ba1,0,axbelse, 称随机变量 X X X 在区间 ( a , b ) (a,b) (a,b) 内服从均匀分布,记为 X ∼ U ( a , b ) . X \sim U(a,b). XU(a,b).

若随机变量 X ∼ U ( a , b ) X \sim U(a,b) XU(a,b),则其分布函数为 F ( x ) = { 0 , x < a x − a b − a , a ≤ x ≤ b 1 , x ≥ b F(x)=\begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \leq x \leq b \\ 1,& x \geq b\\ \end{cases} F(x)= 0,baxa,1,x<aaxbxb

(二)指数分布

设随机变量 X X X 的概率密度为 f ( x ) = { λ e − λ x x > 0 0 , x ≤ 0 ( λ > 0 ) f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0, & x \leq 0 \\ \end{cases}(\lambda > 0) f(x)={λeλx0,x>0x0(λ>0) 称随机变量 X X X 服从参数为 λ \lambda λ 的指数分布,记为 X ∼ E ( λ ) . X \sim E(\lambda). XE(λ).

若随机变量 X ∼ E ( λ ) X \sim E(\lambda) XE(λ),则其分布函数为 F ( x ) = { 1 − e − λ x , x ≥ 0 0 , x < 0 F(x)=\begin{cases} 1-e^{-\lambda x}, & x \geq 0 \\ 0,& x < 0\\ \end{cases} F(x)={1eλx,0,x0x<0

(三)正态分布

设随机变量 X X X 的概率密度为 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 ( − ∞ < x < + ∞ ) , f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}(-\infty < x < +\infty), f(x)=2π σ1e2σ2(xμ)2(<x<+), 称随机变量 X X X 服从正态分布,记为 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2),其概率密度函数如下图所示:
在这里插入图片描述
特别地,若 μ = 0 , σ = 1 \mu =0,\sigma=1 μ=0,σ=1 ,称随机变量 X X X 服从标准正态分布,记为 X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1) ,其概率密度为 φ ( x ) = 1 2 π e − x 2 2 ( − ∞ < x < + ∞ ) , \varphi(x)= \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}(-\infty < x < +\infty), φ(x)=2π 1e2x2(<x<+), 其概率密度函数如下图所示:
在这里插入图片描述
分布函数为 Φ ( x ) = ∫ − ∞ x φ ( t ) d t . \varPhi(x)=\int_{-\infty}^x\varphi(t)dt. Φ(x)=xφ(t)dt. 正态分布具有如下性质:

(1)若 X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1) ,则其概率密度函数 φ ( x ) \varphi(x) φ(x) 为偶函数,且 P { X ≤ 0 } = Φ ( 0 ) = 0.5 , P\{X \leq 0 \}=\varPhi(0)=0.5, P{X0}=Φ(0)=0.5, P { X ≤ − a } = Φ ( − a ) = P { X > a } = 1 − Φ ( a ) . P\{X \leq-a\}=\varPhi(-a)=P\{X > a\}=1-\varPhi(a). P{Xa}=Φ(a)=P{X>a}=1Φ(a). (2)若随机变量 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2) ,则 P { X ≤ μ } = P { X > μ } = 0.5 , P\{X \leq \mu\}=P\{X > \mu\}=0.5, P{Xμ}=P{X>μ}=0.5, 即正态分布的密度函数的图像关于 x = μ x=\mu x=μ 对称。

(3)若随机变量 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2) ,则 X − μ σ ∼ N ( 0 , 1 ) . \frac{X-\mu}{\sigma} \sim N(0,1). σXμN(0,1).

(4)若随机变量 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2) ,则 P { a < X ≤ b } = F ( b ) − F ( a ) = Φ ( b − μ σ ) − Φ ( a − μ σ ) . P\{a < X \leq b\}=F(b)-F(a)=\varPhi(\frac{b-\mu}{\sigma})-\varPhi(\frac{a-\mu}{\sigma}). P{a<Xb}=F(b)F(a)=Φ(σbμ)Φ(σaμ). (5) Φ ( a ) + Φ ( b ) = { < 1 , a + b < 0 = 1 , a + b = 0 > 1 , a + b > 0 \varPhi(a)+\varPhi(b)=\begin{cases} <1, & a+b< 0 \\ =1,& a+b= 0\\ \ >1 ,& a+b> 0\\ \end{cases} Φ(a)+Φ(b)= <1,=1, >1,a+b<0a+b=0a+b>0


四、随机变量函数的分布

X X X 为随机变量,其分布已知,称 Y = φ ( X ) Y=\varphi(X) Y=φ(X) 为随机变量 X X X 的函数,研究随机变量 Y Y Y 的分布及随机变量函数的分布。

(一)离散型随机变量函数的分布

X X X 为随机变量, Y = φ ( X ) Y=\varphi(X) Y=φ(X) ,只要根据 X X X 的可能取值及概率求出 Y Y Y 的可能取值及概率,即可得到 Y Y Y 的分布律。

(二)连续型随机变量函数的分布

X X X 为连续型随机变量,其概率密度为 f ( x ) f(x) f(x) ,又 Y = φ ( x ) Y=\varphi(x) Y=φ(x) ,求随机变量 Y Y Y 的分布时,先求 Y Y Y 的分布函数 P { Y ≤ y } = P { φ ( X ) ≤ y } , P\{Y \leq y\}=P\{\varphi(X) \leq y\}, P{Yy}=P{φ(X)y}, 再通过 X X X 的分布求出 Y Y Y 的分布。

相关文章:

【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(2,常见随机变量及其分布 | 随机变量函数的分布)

文章目录 引言三、常见的随机变量及其分布3.1 常见的离散型随机变量及其分布律&#xff08;一&#xff09;&#xff08;0-1&#xff09;分布&#xff08;二&#xff09;二项分布&#xff08;三&#xff09;泊松分布&#xff08;四&#xff09;几何分布&#xff08;五&#xff0…...

【2023中国算力大会】《中国综合算力指数(2023年)》出炉,宁夏“资源环境”位列全国第1,“算力”跃入Top10

2023年8月18日-19日&#xff0c;2023中国算力大会在宁夏银川举行&#xff0c;本届大会以“算领新产业潮流 力赋高质量发展”为主题&#xff0c;打造“主题论坛、成果展示、产业推介、先锋引领”四大核心内容&#xff0c;全面展示算力产业发展最新成果&#xff0c;为产业各方搭建…...

自动设置服务器全教程

亲爱的爬虫探险家&#xff01;在网络爬虫的世界里&#xff0c;自动设置代理服务器是一个非常有用的技巧。今天&#xff0c;作为一家代理服务器供应商&#xff0c;我将为你呈上一份轻松实用的教程&#xff0c;帮助你轻松搞定爬虫自动设置代理服务器。 一、为什么需要自动设置代…...

Mysql--技术文档--B树-数据结构的认知

阿丹解读&#xff1a; B树&#xff08;B tree&#xff09;和B树&#xff08;B-tree&#xff09;都是常见的自平衡搜索树数据结构&#xff0c;用于在存储和检索大量数据时提供高效的操作。 基本概念-B树/B树 B树&#xff08;B-tree&#xff09;和B树&#xff08;B tree&#x…...

go gin 自定义验证

我们上一篇已经提到了gin中binding时候可以指定json字段大小等限制&#xff0c;但是那个错误却是英文的&#xff0c;现在想搞成中文的&#xff0c;以便前端可读&#xff0c;demo如下 package mainimport ("net/http""reflect""github.com/gin-gonic/…...

掉了无数头发成地中海后,我整理出了这套40+的大屏模板,快收藏!

最近又有不少粉丝后台问我接不接做可视化大屏&#xff0c;看来可视化大屏是越来越火啦&#xff0c;但老李还是要说一下&#xff0c;老李本身工作就很忙&#xff0c;实在是顾不过来&#xff0c;但老李会在自己体验过后为大家挑选合适的工具和模板&#xff0c;提升大家做大屏的效…...

【从零开始学习JAVA | 第四十六篇】处理请求参数

前言&#xff1a; 在我们之前的学习中&#xff0c;我们已经基本学习完了JAVA的基础内容&#xff0c;从今天开始我们就逐渐进入到JAVA的时间&#xff0c;在这一大篇章&#xff0c;我们将对前后端有一个基本的认识&#xff0c;并要学习如何成为一名合格的后端工程师。今天我们介绍…...

k8s的交付与部署案例操作

一 k8s的概念 1.1 k8s k8s是一个轻量级的&#xff0c;用于管理容器化应用和服务的平台。通过k8s能够进行应用的自动化部署和扩容缩容。 1.2 k8s核心部分 1.prod: 最小的部署单元&#xff1b;一组容器的集合&#xff1b;共享网络&#xff1b;生命周期是短暂的&#xff1b; …...

LVS集群 (四十四)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 一、集群概述 1. 负载均衡技术类型 2. 负载均衡实现方式 二、LVS结构 三、LVS工作模式 四、LVS负载均衡算法 1. 静态负载均衡 2. 动态负载均衡 五、ipvsadm命令详…...

stm32之DS18B20

DS18B20与stm32之间也是通过单总线进行数据的传输的。单总线协议在DHT11中已经介绍过。虽说这两者外设都是单总线&#xff0c;但时序电路却很不一样&#xff0c;DS18B20是更为麻烦一点的。 DS18B20 举例&#xff08;原码补码反码转换_原码反码补码转换_王小小鸭的博客-CSDN博客…...

Redis的数据结构与单线程架构

"飞吧&#xff0c;去寻觅红色的流星" Redis中的五种数据结构和编码 Redis是一种通过键值对关系存储数据的软件&#xff0c;在前一篇中&#xff0c;我们可以使用type命令实际返回当前键所对应的数据结构类型&#xff0c;例如: String\list\hash\set等等。 但…...

c# modbus CRC计算器(查表法)

一、简介&#xff1a; 本案例为crc计算器&#xff0c;通过查表法计算出结果 1.窗体后台源代码 using Crc; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text…...

2023.08.27 学习周报

文章目录 摘要文献阅读1.题目2.重点3.引言4.方法5.实验结果6.结论 深度学习Majorization-Minimization算法1.基本思想2.要求3.示意图 总结 摘要 This week, I read a computer science on the prediction of atmospheric pollutants in urban environments based on coupled d…...

css元素定位:通过元素的标签或者元素的id、class属性定位,还不明白的伙计,看这个就行了!

前言 大部分人在使用selenium定位元素时&#xff0c;用的是xpath元素定位方式&#xff0c;因为xpath元素定位方式基本能解决定位的需求。xpath元素定位方式更直观&#xff0c;更好理解一些。 css元素定位方式往往被忽略掉了&#xff0c;其实css元素定位方式也有它的价值&…...

基于Spring实现博客项目

访问地址:用户登录 代码获取:基于Spring实现博客项目: Spring项目写博客项目 一.项目开发 1.项目开发阶段 需求评审,需求分析项目设计(接口设计,DB设计等&#xff0c;比较大的需求,需要设计流程图&#xff0c;用例图,UML, model中的字段)开发&#xff0b;自测提测(提交测试…...

数据库第十七课-------ETL任务调度系统的安装和使用

作者前言 &#x1f382; ✨✨✨✨✨✨&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f382; ​&#x1f382; 作者介绍&#xff1a; &#x1f382;&#x1f382; &#x1f382; &#x1f389;&#x1f389;&#x1f389…...

Qt 动态中英文切换

背景: 需要界面实现动态国际化,一键点击切换中英文或其他语言。 前提: 已经完成了整个界面的翻译,拿到匹配的ts翻译文件,注意:要保证界面切换后,翻译的全覆盖,要保证任何需要反应的地方,都用到了tr("")包含,不然Linguist会捕捉不到。.ts文件的生成参考下文…...

hdfs操作

hadoop fs [generic options] [-appendToFile … ] [-cat [-ignoreCrc] …] [-checksum …] [-chgrp [-R] GROUP PATH…] [-chmod [-R] <MODE[,MODE]… | OCTALMODE> PATH…] [-chown [-R] [OWNER][:[GROUP]] PATH…] [-copyFromLocal [-f] [-p] [-l] [-d] … ] [-copyTo…...

h5分享页适配手机电脑

实现思路 通过media媒体查询结合rem继承html文字大小来实现。 快捷插件配置 这里使用了VSCode的px to rem插件。 先在插件市场搜索cssrem下载插件&#xff1b; 配置插件 页面编写流程及适配详情 配置meta h5常用配置信息:<meta name"viewport" content&quo…...

崭新商业理念:循环购模式的价值引领-微三云门门

尊敬的创业者们&#xff0c;我是微三云门门&#xff0c;今天我将为您详细探讨一种具有颠覆性的商业模式——循环购模式。这套私域流量裂变策略在实际应用中取得了巨大的成功&#xff0c;某些企业在短短6个月内迅速积累了400万用户&#xff01; 循环购商业模式的核心聚焦于三个…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...