一文速学-让神经网络不再神秘,一天速学神经网络基础-前向传播(三)
前言
思索了很久到底要不要出深度学习内容,毕竟在数学建模专栏里边的机器学习内容还有一大半算法没有更新,很多坑都没有填满,而且现在深度学习的文章和学习课程都十分的多,我考虑了很久决定还是得出神经网络系列文章,不然如果以后数学建模竞赛或者是其他更优化模型如果用上了神经网络(比如利用LSTM进行时间序列模型预测),那么就更好向大家解释并且阐述原理了。但是深度学习的内容不是那么好掌握的,包含大量的数学理论知识以及大量的计算公式原理需要推理。且如果不进行实际操作很难够理解我们写的代码究极在神经网络计算框架中代表什么作用。不过我会尽可能将知识简化,转换为我们比较熟悉的内容,我将尽力让大家了解并熟悉神经网络框架,保证能够理解通畅以及推演顺利的条件之下,尽量不使用过多的数学公式和专业理论知识。以一篇文章快速了解并实现该算法,以效率最高的方式熟练这些知识。
现在很多竞赛虽然没有限定使用算法框架,但是更多获奖的队伍都使用到了深度学习算法,传统机器学习算法日渐式微。比如2022美国大学生数学建模C题,参数队伍使用到了深度学习网络的队伍,获奖比例都非常高,现在人工智能比赛和数据挖掘比赛都相继增多,对神经网络知识需求也日渐增多,因此十分有必要掌握各类神经网络算法。
博主专注建模四年,参与过大大小小数十来次数学建模,理解各类模型原理以及每种模型的建模流程和各类题目分析方法。此专栏的目的就是为了让零基础快速使用各类数学模型、机器学习和深度学习以及代码,每一篇文章都包含实战项目以及可运行代码。博主紧跟各类数模比赛,每场数模竞赛博主都会将最新的思路和代码写进此专栏以及详细思路和完全代码。希望有需求的小伙伴不要错过笔者精心打造的专栏。

前向传播
上两篇文章讲述了神经网络的基本架构和各类常用的激活函数,那么我们知道,在神经网络中每个神经元都与其前后层的每个神经元相互连接,那么神经网络要怎么通过输入的数据又是经过何种计算到输出层的呢?我们现在就来看看它的工作原理。
神经网络的传递过程可以描述为四个关键的步骤:
从输入到隐藏层
神经网络从输入层到隐藏层的计算方式涉及权重和偏置的线性组合,然后将结果传递给激活函数。
- 输入信号: 输入层接收外部输入的数据,这些数据可以是图像、文本、数字等。每个输入都对应着网络中的一个输入神经元。假设输入层有
个神经元,分别为
,它们分别表示第1个到第
个输入神经元的输出。
- 权重和偏置: 隐藏层包含多个神经元,每个神经元与输入层的每个神经元都有一个连接,连接上有一个权重
。其中,$j$ 表示隐藏层中的神经元索引,
表示输入层中的神经元索引。每个隐藏层神经元还有一个偏置
。
- 线性组合: 对于隐藏层中的第
个神经元,其输入信号将与权重相乘并加上偏置,得到线性组合的值
:

- 激活函数: 对于线性组合的值
,将其输入激活函数 $f$ 中,得到隐藏层神经元的输出
:
,常见的激活函数包括 sigmoid、ReLU、tanh 等,它们引入非线性性质,使得神经网络能够学习更复杂的函数。 - 逐层传递: 上述步骤在每个隐藏层中的每个神经元都会重复进行。每个隐藏层神经元的输出将成为下一层神经元的输入。
这个计算过程将重复在每一层的每个神经元中,直到得到隐藏层的输出。这些隐藏层的输出将成为下一层的输入,以此类推,直到达到输出层。通过这种逐层计算的方式,神经网络可以从输入数据中提取并表示更高级别的特征。

如果理解上述文字描述感觉抽象吃力的话,我们可以根据有一个小例子来具体理解神经网络的前向传递过程:

如上图所示为一个神经网络基本结构,我们设定两个输入节点,
为实际真值情况
,那么我们设定权重:
对输入层到隐藏层的节点进行加权求和,结果分别如下:
节点1的值为:
节点2的值为:
接着对隐藏层的节点的值执行Sigmoid激活,sigmoid函数在我上篇文章有详细讲述,直接进行计算即可:
然后对隐藏层的输出到输出节点进行加权求和:
最后我们发现0.18和真值0.1还是有差距的,若是权重设定不合适会导致更差的结果,这个时候就需要使用到反向传播来使预测值更加接近真实值。当然如果是输入层较多,隐藏层比较复杂,我们一般是使用矩阵来进行,例如:

我们可以使用矩阵运算来表达:
现在假设输入数据源是,我们再进行一次计算:
import numpy as np
def _sigmoid(in_data):return 1/(1+np.exp(-in_data))
#输入层
x = np.array([0.9,0.1,0.8])
#隐藏层:需要计算输入层到中间隐藏层每个节点的组合,中间隐藏层的每个节点都与输入层相连,所以w1是一个3*3的矩阵
#因此每个节点都会得到输入信号的部分信息
#第一个输入节点与中间隐藏层第一个节点之间的权重w11=0.9,输入的第二个节点与隐藏层之间的连接的权重为w22=0.8
w1 = np.array([[0.9,0.3,0.4],[0.2,0.8,0.2],[0.1,0.5,0.6]])
#因为输出层包含了3个节点,所以w2也是一个3x3的矩阵
w2 = np.array([[0.3,0.7,0.5],[0.6,0.5,0.2],[0.8,0.1,0.9]
])Xhidden = _sigmoid(w1.dot(x))
print(Xhidden)
Xoutput = w2.dot(Xhidden)
print(Xoutput) #最终输出结果
下面再来看一个更加复杂的例子:

这个案例我们增加一层隐藏层再来看看如何运算:
def _sigmoid(in_data):return 1/(1+np.exp(-in_data))def init_network():network={}network['w1']=np.array([[0.1,0.3,0.5],[0.2,0.4,0.6]])network['b1']=np.array([0.1,0.2,0.3])network['w2']=np.array([[0.1,0.4],[0.2,0.5],[0.3,0.6]])network['b2']=np.array([0.1,0.2])network['w3']=np.array([[0.1,0.3],[0.2,0.4]])network['b3']=np.array([0.1,0.2])return networkdef forward(network,x):w1,w2,w3 = network['w1'],network['w2'],network['w3']b1,b2,b3 = network['b1'],network['b2'],network['b3']a1 = x.dot(w1) + b1z1 = _sigmoid(a1)a2 = z1.dot(w2) + b2z2 = _sigmoid(a2)a3 = z2.dot(w3)+b3y=a3return ynetwork = init_network()
x = np.array([1.0,0.5])
y = forward(network,x)
print(y)
![]()
那么前向传播到这里就全部讲完了,没有很复杂的内容,线性计算就可以,下一章我们将着重讲述一下输出层的计算和功能。
相关文章:
一文速学-让神经网络不再神秘,一天速学神经网络基础-前向传播(三)
前言 思索了很久到底要不要出深度学习内容,毕竟在数学建模专栏里边的机器学习内容还有一大半算法没有更新,很多坑都没有填满,而且现在深度学习的文章和学习课程都十分的多,我考虑了很久决定还是得出神经网络系列文章,…...
vscode 无法跳转第三方安装包
vscode 无法跳转第三方安装包 场景:使用vscode写代码时, 第三方的安装包无法使用ctrl 左键,点击进入查看, 不方便源码查看 解决办法: 使用快捷键 Ctrl Shift P, 进入命令搜索框搜索 setting.json 编辑…...
XML—DTD、 Schema
目录 DTD是什么? DTD有什么用途? DTD与XML有什么联系? DTD原理图 外部DTD DTD文件book.dtd: 使用外部DTD文件的XML文件 PCDATA XML 文档构建模块 一、元素 1、元素声明 ①、有元素: ②、空元素: ③、ANY…...
基于web的仓库管理系统jsp商品进销存java源代码Mysql
本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 基于web的仓库管理系统 系统有2权限:管理…...
GitLab启动失败:fail: alertmanager: runsv not running
问题描述 sudo gitlab-ctl restart ,报错如下 : summergaoubuntu:/etc/gitlab$ sudo gitlab-ctl start fail: alertmanager: runsv not running fail: gitaly: runsv not running fail: gitlab-exporter: runsv not running fail: gitlab-workhorse: …...
JVM核心原理解读(一)---执行引擎
Java虚拟机规范制定了Java字节码执行引擎的概念模型,Java执行引擎作用概括起来就是执行编译产生的Java class文件,为用户提供了底层OS的调用,屏蔽了不同平台硬件和OS的差异性,使得编写的代码无差别的在各个平台运行;对于Java字节码执行一般有解释执行和编译执行两种,具体使用哪…...
Docker:Harbor 私有仓库迁移
Harbor 私有仓库迁移 一.私有仓库迁移的介绍 1.为何要对Harbor 私有仓库的迁移 (1)硬件升级或更换:如果源 Harbor 在旧的硬件设备上运行,并且计划将其迁移到新的硬件设备上,那么需要执行迁移操作。 (2&…...
(六)k8s实战-存储管理
一、Volumes 1、HostPath 【使用场景:容器目录 挂载到 主机目录】 【可以持久化到主机上】 将节点上的文件或目录挂载到 Pod 上,此时该目录会变成持久化存储目录,即使 Pod 被删除后重启,也可以重新加载到该目录,该目…...
ChatGPT Prompting开发实战(二)
一、基于LangChain源码react来解析prompt engineering 在LangChain源码中一个特别重要的部分就是react,它的基本概念是,LLM在推理时会产生很多中间步骤而不是直接产生结果,这些中间步骤可以被用来与外界进行交互,然后产生new con…...
Android屏幕适配(5) — 最小宽度smallWidth适配
概述 最小宽度smallWidth适配实现屏幕适配方案 详细 前言 在之前的文章中,我们讲到了Android屏幕适配的一些知识,大家感兴趣的话可参考Android屏幕适配(1) — 概念解释Android屏幕适配(2) — drawable与mipmapAndroid屏幕适配(3) — 资源文件夹命名与…...
详细介绍如何基于ESP32实现低功耗的电子纸天气显示器--附完整源码
实现界面展示 这是一款天气显示器,由支持 wifi 的 ESP32 微控制器和 7.5 英寸电子纸(又名电子墨水)显示器供电。当前和预测的天气数据是从 OpenWeatherMap API 获取的。传感器为显示屏提供准确的室内温度和湿度。 该项目在睡眠时消耗约 14μA,在约 10 秒的清醒期…...
DC电源模块不同的尺寸可以适应实际应用场景
BOSHIDA DC电源模块不同的尺寸可以适应实际应用场景 DC电源模块是现代电子设备的必备部件之一,其可提供稳定的直流电源,保证电子设备正常运行。DC电源模块尺寸的选择直接影响到其适应的应用场景及其性能表现。本文将从尺寸方面分析DC电源模块的适应性&a…...
@XmlType,@XmlRootElement,@XmlAttribute的作用与区别
XmlType、XmlRootElement 和 XmlAttribute 都是 Java 标准库中 javax.xml.bind.annotation 包提供的注解,用于在使用 JAXB(Java Architecture for XML Binding)或其他 XML 绑定技术时,控制 Java 类与 XML 数据之间的映射关系。 它…...
安装虚拟机
软硬件准备 软件:推荐使用VMwear,我用的是VMwear 12 镜像:CentOS7 ,如果没有镜像可以在官网下载 :http://isoredirect.centos.org/centos/7/isos/x86_64/CentOS-7-x86_64-DVD-1804.iso 硬件:因为是在宿主机上运行虚拟…...
(动态规划) 剑指 Offer 48. 最长不含重复字符的子字符串 ——【Leetcode每日一题】
❓剑指 Offer 48. 最长不含重复字符的子字符串 难度:中等 请从字符串中找出一个最长的不包含重复字符的子字符串,计算该最长子字符串的长度。 示例 1: 输入: “abcabcbb” 输出: 3 解释: 因为无重复字符的最长子串是 “abc”,所以其长度为…...
【文心一言】如何申请获得体验资格,并简单使用它的强大功能
目录 一、文心一言1.1、它能做什么1.2、技术特点1.3、申请方法 二、功能体验2.1、文心一言2.2、写冒泡排序代码 测试代码2.3、画一个爱心2.4、画一个星空 三、申请和通过3.1、申请时间3.2、通过时间 文心一言,国内首个大型人工智能对话模型,发布已经快一…...
1. 卷积原理
① 卷积核不停的在原图上进行滑动,对应元素相乘再相加。 ② 下图为每次滑动移动1格,然后再利用原图与卷积核上的数值进行计算得到缩略图矩阵的数据,如下图右所示。 import torch import torch.nn.functional as Finput torch.tensor([[1, 2…...
pandas读取excel,再写入excel
需求是这样的,从一个表读取数据,然后每次执行创建一个新表将值写入 读取这个表 写入到这个表 分别对应的是e、h列数据,代码如下: import pandas as pd import openpyxl import datetime dfpd.read_excel(rC:\Users\admin\Deskt…...
【React学习】—React中的事件绑定(八)
【React学习】—React中的事件绑定(八) 一、原生JS <body><button id"btn1">按钮1</button><button id"btn2">按钮2</button><button onclick"demo()">按钮3</button><scr…...
记录在ubuntu 18.04系统上安装虚拟机的过程
- 下载ubuntu镜像 ubuntu镜像下载地址 我下载的是desktop桌面版,比较好操作。 - 烧录 我用的Mac,使用的是balenaEtcher软件进行磁盘烧录。 balenaEtcher下载地址 如果出现磁盘损坏或者无法再次使用,参考这里解决:进入 - 安…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
windows系统MySQL安装文档
概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...

