【卷积神经网络】MNIST 手写体识别
LeNet-5 是经典卷积神经网络之一,1998 年由 Yann LeCun 等人在论文 《Gradient-Based Learning Applied to Document Recognition》中提出。LeNet-5 网络使用了卷积层、池化层和全连接层,实现可以应用于手写体识别的卷积神经网络。TensorFlow 内置了 MNIST 手写体数据集,可以很方便地读取数据集,并应用于后续的模型训练过程中。本文主要记录了如何使用 TensorFlow 2.0 实现 MNIST 手写体识别模型。
目录
1 数据集准备
2 模型建立
3 模型训练
1 数据集准备
TensorFlow 内置了 MNIST 手写体数据集,安装 TensorFlow 之后,使用如下代码就可以加载 MNIST 数据集:
import tensorflow as tfmnist = tf.keras.datasets.mnist
(train_x, train_y), (test_x, test_y) = mnist.load_data()
使用 Matplotlib 查看前 25 张图片,并打印对应的标签。
from matplotlib import pyplot as plt# 查看训练集
plt.figure(figsize=(3,3))
for i in range(25):plt.subplot(5,5,i+1)plt.imshow(train_x[i], cmap=plt.cm.binary)plt.xticks([])plt.yticks([])
plt.show()
接着,使用 tf.one_hot() 函数,对图像的标签进行独热码编码。
# 预处理
train_y = tf.one_hot(train_y, depth=10)
test_y = tf.one_hot(test_y, depth=10)
2 模型建立
MNIST 手写体数据集中,每张图像的大小是 28 × 28 × 1,按照 LeNet-5 模型的思路,构建卷积神经网络模型。选择 5 × 5 的卷积核,卷积层之后是 2 × 2 的平均池化,激活函数选择 sigmoid(除了最后一层)。
# the first layer can receive an 'input_shape' argument
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(filters=6,kernel_size=5,padding='valid',activation='sigmoid',input_shape=(28,28,1)),tf.keras.layers.AveragePooling2D(pool_size=(2,2),strides=2,padding='valid'),tf.keras.layers.Conv2D(filters=16,kernel_size=5,padding='valid',activation='sigmoid'),tf.keras.layers.AveragePooling2D(pool_size=(2,2),strides=2,padding='valid'),tf.keras.layers.Flatten(),tf.keras.layers.Dense(120,activation='sigmoid'),tf.keras.layers.Dense(84,activation='sigmoid'),tf.keras.layers.Dense(10,activation='softmax')
])
使用 model.summary() 查看模型信息。
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 24, 24, 6) 156
average_pooling2d (AverageP (None, 12, 12, 6) 0
ooling2D)
conv2d_1 (Conv2D) (None, 8, 8, 16) 2416
average_pooling2d_1 (Averag (None, 4, 4, 16) 0
ePooling2D)
flatten (Flatten) (None, 256) 0
dense (Dense) (None, 120) 30840
dense_1 (Dense) (None, 84) 10164
dense_2 (Dense) (None, 10) 850
=================================================================
Total params: 44,426
Trainable params: 44,426
Non-trainable params: 0
_________________________________________________________________
3 模型训练
使用 compile() 函数配置模型,优化算法为 Adam 算法,学习率为 0.001,损失函数为交叉熵损失函数。
# 模型配置
model.compile(optimizer=tf.keras.optimizer.Adam(learning_rate=1e-3),loss=tf.keras.losses.CategoricalCrossentropy(),metrics=['accuracy']
)# 模型训练
model.fit(x=train_x,y=train_y,validation_split=0.0,epochs=10
)
Epoch 1/10
1875/1875 [==============================] - 72s 38ms/step - loss: 0.5806 - accuracy: 0.8206
Epoch 2/10
1875/1875 [==============================] - 70s 37ms/step - loss: 0.1254 - accuracy: 0.9620
Epoch 3/10
1875/1875 [==============================] - 75s 40ms/step - loss: 0.0870 - accuracy: 0.9735
Epoch 4/10
1875/1875 [==============================] - 82s 43ms/step - loss: 0.0699 - accuracy: 0.9785
Epoch 5/10
1875/1875 [==============================] - 69s 37ms/step - loss: 0.0604 - accuracy: 0.9809
Epoch 6/10
1875/1875 [==============================] - 68s 36ms/step - loss: 0.0530 - accuracy: 0.9833
Epoch 7/10
1875/1875 [==============================] - 72s 38ms/step - loss: 0.0477 - accuracy: 0.9854
Epoch 8/10
1875/1875 [==============================] - 70s 38ms/step - loss: 0.0436 - accuracy: 0.9863
Epoch 9/10
1875/1875 [==============================] - 70s 37ms/step - loss: 0.0399 - accuracy: 0.9873
Epoch 10/10
1875/1875 [==============================] - 68s 36ms/step - loss: 0.0357 - accuracy: 0.9883
<keras.callbacks.History at 0x20a56b65660>
相关文章:

【卷积神经网络】MNIST 手写体识别
LeNet-5 是经典卷积神经网络之一,1998 年由 Yann LeCun 等人在论文 《Gradient-Based Learning Applied to Document Recognition》中提出。LeNet-5 网络使用了卷积层、池化层和全连接层,实现可以应用于手写体识别的卷积神经网络。TensorFlow 内置了 MNI…...

Ansible学习笔记2
Ansible是Python开发的自动化运维工具,集合了众多运维工具(Puppet、cfengine、chef、func、fabric)的优点,实现了批量系统配置,批量程序部署、批量运行命令等功能。 特点: 1)部署简单ÿ…...

80. 删除有序数组中的重复项 II
【中等题】 题目: 给你一个有序数组 nums ,请你 原地 删除重复出现的元素,使得出现次数超过两次的元素只出现两次 ,返回删除后数组的新长度。 不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 O(1) 额…...

CVE-2023-36874 Windows错误报告服务本地权限提升漏洞分析
CVE-2023-36874 Windows错误报告服务本地权限提升漏洞分析 漏洞简介 Windows错误报告服务在提交错误报告前会创建wermgr.exe进程,而攻击者使用特殊手法欺骗系统创建伪造的wermgr.exe进程,从而以system权限执行代码。 影响版本 Windows10 1507 * Wind…...

IDEA遇到 git pull 冲突的几种解决方法
1 忽略本地修改,强制拉取远程到本地 主要是项目中的文档目录,看的时候可能多了些标注,现在远程文档更新,本地的版本已无用,可以强拉 git fetch --all git reset --hard origin/dev git pull关于commit和pull的先后顺…...

[Unity]UI和美术出图效果不一致
问题描述:美术使用PS在Gamma空间下设计的UI图,导入到Unity,因为Unity使用的是线性空间,导致半透明的UI效果和美术设计的不一致。 解决方案: (一)让美术在线性空间下工作 (二&…...

SpringBoot整合JPA和Hibernate框架
Springboot整合JPAHibernate框架【待完成】 随着MybatisPlus技术的发展,JPA和Hibernate技术已经逐步淘汰 JPA遵循了Hibernate框架规则,目前使用的不多 1、添加依赖 <!--jpa--> <dependency><groupId>org.springframework.boot</…...

Java中文件的创建(三种方式),文件常用的方法
文件的创建 方式1: new File(String pathName) 根据路径构建一个File对象方式2: new File(File parent,String child) 根据父目录文件子路径构建方式3: new File(String parent,String child) 根据父目录子路径构建 代码: //方…...

Spring boot中调用C/C++(dll)
添加JNA依赖 <dependency><groupId>net.java.dev.jna</groupId><artifactId>jna</artifactId><version>5.5.0</version> </dependency>准备C代码/C代码 如下是C代码,文件名:xizi.c #include <std…...

【Apollo学习笔记】——规划模块TASK之PATH_DECIDER
文章目录 前言PATH_DECIDER功能简介PATH_DECIDER相关配置PATH_DECIDER总体流程路径决策代码流程及框架MakeStaticObstacleDecision PATH_DECIDER相关子函数参考 前言 在Apollo星火计划学习笔记——Apollo路径规划算法原理与实践与【Apollo学习笔记】——Planning模块讲到……S…...

Lua学习(二)
Lua基础学习 7. lua函数8. lua运算符8.1 算数运算符8.2 关系运算符8.3 逻辑运算符8.4 其他运算符 9. lua字符串9.1 字符串格式化9.2 匹配模式 10. lua数组11. lua迭代器11.1 Lua table 12. lua 模块12.1 加载机制12.2 C 包 接着上一篇的内容。Lua学习(一)…...

制作鲜花商城小程序的详细步骤
如果你是一个新手商家,想要进入鲜花团购市场,但是不知道如何制作一个小程序商城,那么这篇文章就是为你准备的。以下是制作鲜花团购小程序商城的详细步骤: 1. 登录乔拓云平台后台,进入商城管理页面 首先,你需…...

Ubuntu20以上高版本如何安装低版本GCC
安装了Ubuntu 20.04之后,通过命令行 sudo apt-get install build-essential安装gcc,再通过命令行 gcc -v可查看gcc版本为gcc13 如果想用低版本的gcc,比如gcc4.8,尝试输入命令 sudo apt-get install gcc-4.8会提示找不到gcc4.8的…...

context.WithCancel()的使用
“ WithCancel可以将一个Context包装为cancelCtx,并提供一个取消函数,调用这个取消函数,可以Cancel对应的Context Go语言context包-cancelCtx[1] 疑问 context.WithCancel()取消机制的理解[2] 父母5s钟后出门,倒计时,父母在时要学习,父母一走…...

vue3中引入百度地图
话不多说直接开干 1.第一种方式 百度地图地址 打开 https://lbsyun.baidu.com/index.php?title%E9%A6%96%E9%A1%B5 然后点进去地图 然后再这个功能里面选择一个地图,然后跳转页面 然后一直下滑 滑到底部 点击这个 跳转到这个页面 然后点击进入demo这个 然后到这个…...

【Linux-Day8- 进程替换和信号】
进程替换和信号 问题引入 我们发现 终端输入的任意命令的父进程都是bash,这是因为Linux系统是用fork()复制出子进程,然后在子进程中调用替换函数进行进程替换,实现相关命令。 (1) exec 系列替换过程:pcb 使用以前的只…...

日志文件之间关系和介绍及应用
1.常用日志框架代码举例 Log4j: Log4j是Java中广泛使用的日志框架之一。它提供了灵活的配置选项和丰富的功能,支持日志级别、日志输出目标等。Log4j有1.x版本和2.x版本,其中Log4j 2.x是对1.x的升级和扩展。 Logback: Logback是由Log4j创始人设计的Log4…...

mac电脑屏幕录制Berrycast Mac屏幕录制软件
Berrycast是一款为Mac设计的优秀屏幕录制软件,它让屏幕录制变得简单而高效。以下是Berrycast的一些主要特点: 简单的用户界面:Berrycast拥有直观和简洁的用户界面,使得用户可以轻松上手。高质量的视频输出:Berrycast能…...

机器学习笔记之最优化理论与方法(一)最优化问题概述
机器学习笔记之最优化理论与方法——最优化问题概述 引言什么是最优化问题最优化问题的基本形式最优化问题的分类各分类最优化问题的数学表达约束优化VS无约束优化线性规划VS非线性规划连续优化VS离散优化单目标优化VS多目标优化 引言 从本节开始,将对最优化理论与…...

【ES5新特性一】 严格模式语法变化、全局的JSON对象、编码和解码的方法
前言 ECMAScript 和 JavaScript 的关系 一个常见的问题是,ECMAScript 和 JavaScript 到底是什么关系? 要讲清楚这个问题,需要回顾历史。1996 年 11 月,JavaScript 的创造者 Netscape 公司,决定将 JavaScript 提交给标准…...

Java【手撕滑动窗口】LeetCode 3. “无重复字符的最长子串“, 图文详解思路分析 + 代码
文章目录 前言一、长度最小子数组1, 题目2, 思路分析3, 代码 前言 各位读者好, 我是小陈, 这是我的个人主页, 希望我的专栏能够帮助到你: 📕 JavaSE基础: 基础语法, 类和对象, 封装继承多态, 接口, 综合小练习图书管理系统等 📗 Java数据结构: 顺序表, 链…...

学习哈哈哈哈
# 零、学习计划 * 数据库相关 * 索引 * [我以为我对数据库索引很了解,直到我遇到了阿里面试官 - 知乎 (zhihu.com)](https://zhuanlan.zhihu.com/p/107487215) * [给我一分钟,让你彻底明白MySQL聚簇索引和非聚簇索引 - 知乎 (zhihu.com)](ht…...

05-基础例程5
基础例程5 1、超声波测距 实验介绍 HC-SR04超声波传感器是一款测量距离的传感器。其原理是利用声波在遇到障碍物反射接收结合声波在空气中传播的速度计算的得出。 外观 管脚功能的定义 VCC:供电电源;Trig:触发信号;Echo&a…...

双基证券:预计未来还会有更多政策来吸引增量资金
双基证券表示,8月27日,活泼资本商场五大方针出台:证券交易印花税折半征收;阶段性收紧IPO节奏;上市房企再融资不受破发、破净和亏本限制;标准控股股东与实际操控人减持行为;融资保证金最低份额由…...

前端:html实现页面切换、顶部标签栏,类似于浏览器的顶部标签栏(完整版)
效果 代码 <!DOCTYPE html> <html><head><style>/* 左侧超链接列表 */.link {display: block;padding: 8px;background-color: #f2f2f2;cursor: pointer;}/* 顶部标签栏 */#tabsContainer {width:98%;display: flex;align-items: center;overflow-x: …...

强化自主可控,润开鸿发布基于RISC-V架构的开源鸿蒙终端新品
2023 RISC-V中国峰会于8月23日至25日在北京召开,峰会以“RISC-V生态共建”为主题,结合当下全球新形势,把握全球新时机,呈现RISC-V全球新观点、新趋势。本次大会邀请了RISC-V国际基金会、业界专家、企业代表及社区伙伴等共同探讨RISC-V发展趋势与机遇,吸引超过百余家业界企业、高…...

软件设计师知识点·1
控制器: (1)指令寄存器(IR) : CPU执行一条指令时,从内存储器取到缓冲寄存器中,再送入IR暂存; (2)程序计数器(PC): 将要执行的下一条指令的地址; (3)地址寄存器(IR): 当前CPU所访问的内存单元地址; (4)指令译码器(ID): 对指令中的操作码字段进行分析解释; 多核CPU可以满足用户…...

修改Jupyter Notebook默认打开路径
这里我是重新下载的anaconda,打开Jupyter之后是默认在C盘的一个路径的,现在我们就来修改一下它的一个默认打开路径,这样在我们后续学习过程中,可以将ipynb后缀的文件放在这个目录下就能查看了。 1、先打开Anaconda Prompt&#x…...

经典卷积网络
目录 一、经典神经网络出现的时间线编辑 二、LeNet 三、AlexNet 四、VGGNet 五、InceptionNet 六、ResNet 总结: 一、经典神经网络出现的时间线 二、LeNet 背景:LeNet由Yann LeCun于1998年提出,卷积网络开篇之作。 解释࿱…...

react+koa+vite前后端模拟jwt鉴权过程
路由组件(生成token) const Router require(koa/router) const jwt require(jsonwebtoken); const router new Router()const mockDbUserInfo [{nickname: xxxliu,username: Tom,password: 123456,icon: url1},{nickname: xxx,username: John,passw…...