当前位置: 首页 > news >正文

基于饥饿游戏算法优化的BP神经网络(预测应用) - 附代码

基于饥饿游戏算法优化的BP神经网络(预测应用) - 附代码

文章目录

  • 基于饥饿游戏算法优化的BP神经网络(预测应用) - 附代码
    • 1.数据介绍
    • 2.饥饿游戏优化BP神经网络
      • 2.1 BP神经网络参数设置
      • 2.2 饥饿游戏算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用饥饿游戏算法优化BP神经网络并应用于预测。

1.数据介绍

本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据

2.饥饿游戏优化BP神经网络

2.1 BP神经网络参数设置

神经网络参数如下:

%% 构造网络结构
%创建神经网络
inputnum = 2;     %inputnum  输入层节点数 2维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 1;     %outputnum  隐含层节点数

2.2 饥饿游戏算法应用

饥饿游戏算法原理请参考:https://blog.csdn.net/u011835903/article/details/122305294

饥饿游戏算法的参数设置为:

popsize = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:2*10 = 20; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:10*1 = 10;即hiddenum * outputnum;

第二层权值数量为:1;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 41;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( m s e ( T r a i n D a t a E r r o r ) + m e s ( T e s t D a t a E r r o r ) ) fitness = argmin(mse(TrainDataError) + mes(TestDataError)) fitness=argmin(mse(TrainDataError)+mes(TestDataError))
其中TrainDataError,TestDataError分别为训练集和测试集的预测误差。mse为求取均方误差函数,适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从饥饿游戏算法的收敛曲线可以看到,整体误差是不断下降的,说明饥饿游戏算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

相关文章:

基于饥饿游戏算法优化的BP神经网络(预测应用) - 附代码

基于饥饿游戏算法优化的BP神经网络(预测应用) - 附代码 文章目录 基于饥饿游戏算法优化的BP神经网络(预测应用) - 附代码1.数据介绍2.饥饿游戏优化BP神经网络2.1 BP神经网络参数设置2.2 饥饿游戏算法应用 4.测试结果:5…...

[ 云计算 | AWS ] Java 应用中使用 Amazon S3 进行存储桶和对象操作完全指南

文章目录 一、前言二、所需 Maven 依赖三、先决必要的几个条件信息四、创建客户端连接五、Amazon S3 存储桶操作5.1. 创建桶5.2. 列出桶 六、Amazon S3 对象操作6.1. 上传对象6.2. 列出对象6.3. 下载对象6.4. 复制、重命名和移动对象6.5. 删除对象6.6. 删除多个对象 七、文末总…...

【Spring Boot】Spring Boot 配置 Hikari 数据库连接池

文章目录 前言配置 前言 数据库连接池是一个提高程序与数据库的连接的优化,连接池它主要作用是提高性能、节省资源、控制连接数、连接管理等操作; 程序中的线程池与之同理,都是为了优化、提高性能。 配置 spring:datasource:hikari:# 设置是…...

MR混合现实石油化工课堂情景实训教学演示

MR(混合现实)技术是一种结合了虚拟现实(VR)和增强现实(AR)优势的新型技术,在教育领域具有广阔的应用前景。在石油化工课堂中,MR混合现实情景实训教学的应用可以大大提高学生的学习效…...

php thinkphp 抖音支付,订单同步接口分享

1. 抖音支付 需要获取抖音小程序的AppID,AppSecret,需要配置回调地址,Token获取SALT 官方地址:支付,订单同步 以下干货仅针对于有一定开发基础的精英,0基础的止步。 public function DouyinPay($openId,$id,$body 抖音担保支付…...

excel功能区(ribbonx)编程笔记--2 button控件与checkbox控件

我们上一章简单先了解了ribbonx的基本内容,以及使用举例实现自己修改ribbox的内容,本章紧接上一章,先讲解一下ribbonx的button控件。 在功能区的按钮中,可以使用内置图像或提供自已的图像,可以指定大按钮或者更小的形式,添加少量的代码甚至可以同时提供标签。此外,可以利…...

JavaScript 知识点

立即执行函数 代码(function () {// ... })();创建函数的同时立即执行,没有绑定任何事件,也无需等待任何异步操作function () {} 是一个匿名函数,包围它的一对括号将其转换为一个表达式,紧跟其后的一对括号调用了这个函数。立即执…...

深入理解 JVM 之——动手编译 JDK

更好的阅读体验 \huge{\color{red}{更好的阅读体验}} 更好的阅读体验 本篇为深入理解 Java 虚拟机第一章的实战内容,推荐在学习前先掌握基础的 Linux 操作、编译原理基础以及扎实的 C/C 功底。 该系列的 GitHub 仓库:https://github.com/Doge2077/lear…...

[移动通讯]【Carrier Aggregation in LTE】【 Theory + Log analysis-1】

CA: Carrrier Aggregation PCC: Primary Component Carrier SCC: SCC Secondary Component Carrier 目录: 背景介绍 PCC & SCC 聚合方式 Precondition for CA 一 背景介绍 在没有CA 技术前,手机和基站以单子载波的方式,收发…...

Sui诚邀您参加KBW「首尔Web3之夜」

韩国区块链周(KBW)是由FACTBLOCK创办,Hashed联合主办的年度盛会。今年的KBW将于9月4–10日在韩国首尔举办。作为亚洲最具影响力的Web3行业盛会之一,KBW将汇聚业界优秀的参与者和先驱者,共同探讨区块链行业的未来。 Su…...

19.CSS雨云动画特效

效果 源码 <!DOCTYPE html> <html lang="en"> <head><meta charset="UTF-8"><title>Cloud & Rain Animation</title><link rel="stylesheet" href="style.css"> </head> <bo…...

第61步 深度学习图像识别:多分类建模(TensorFlow)

基于WIN10的64位系统演示 一、写在前面 截至上期&#xff0c;我们一直都在做二分类的任务&#xff0c;无论是之前的机器学习任务&#xff0c;还是最近更新的图像分类任务。然而&#xff0c;在实际工作中&#xff0c;我们大概率需要进行多分类任务。例如肺部胸片可不仅仅能诊断…...

Spark 7:Spark SQL 函数定义

SparkSQL 定义UDF函数 方式1语法&#xff1a; udf对象 sparksession.udf.register(参数1&#xff0c;参数2&#xff0c;参数3&#xff09; 参数1&#xff1a;UDF名称&#xff0c;可用于SQL风格 参数2&#xff1a;被注册成UDF的方法名 参数3&#xff1a;声明UDF的返回值类型 ud…...

ThinkPHP 文件上传 fileSystem 扩展的使用

ThinkPHP 文件上传 ThinkPHP 文件上传 扩展 filesystem一、安装 FileSystem 扩展二、认识 filesystem 配置文件 config/filesystem.php三、上传验证&#xff08;涉及到验证器的知识点&#xff09;四、文件上传demo ThinkPHP 文件上传 扩展 filesystem ThinkPHP 为我们 提供了 …...

液体神经网络LLN:通过动态信息流彻底改变人工智能

巴乌米克泰吉 一、说明 在在人工智能领域&#xff0c;神经网络已被证明是解决复杂问题的非常强大的工具。多年来&#xff0c;研究人员不断寻求创新方法来提高其性能并扩展其能力。其中一种方法是液体神经网络&#xff08;LNN&#xff09;的概念&#xff0c;这是一个利用动态计算…...

2023年的今天,PMP项目管理认证还值得考吗?

首先我肯定它值得考&#xff0c;PMP认证的教材和考纲都会随着项目管理工具和市场趋势而更新&#xff0c;不用担心会过时。 PMP项目管理认证是什么&#xff1f; 英文全称是Project Management Professional&#xff0c;中文全称叫做项目管理专业人士资格认证。它是由美国项目管…...

【JavaSE专栏91】Java如何主动发起Http、Https请求?

作者主页&#xff1a;Designer 小郑 作者简介&#xff1a;3年JAVA全栈开发经验&#xff0c;专注JAVA技术、系统定制、远程指导&#xff0c;致力于企业数字化转型&#xff0c;CSDN学院、蓝桥云课认证讲师。 主打方向&#xff1a;Vue、SpringBoot、微信小程序 本文讲解了如何使用…...

给oracle逻辑导出clob大字段、大数据量表提提速

文章目录 前言一、大表数据附&#xff1a;查询大表 二、解题思路1.导出排除大表的数据2.rowid切片导出大表数据Linux代码如下&#xff08;示例&#xff09;&#xff1a;Windows代码如下&#xff08;示例&#xff09;&#xff1a;手工执行代码如下&#xff08;示例&#xff09;&…...

研发规范第九讲:通用类命名规范(重点)

研发规范第九讲&#xff1a;通用类命名规范&#xff08;重点&#xff09; 无规范不成方圆。我自己非常注重搭建项目结构的起步过程&#xff0c;应用命名规范、模块的划分、目录&#xff08;包&#xff09;的命名&#xff0c;我觉得非常重要&#xff0c;如果做的足够好&#xff…...

python+django+协同过滤算法-基于爬虫的个性化书籍推荐系统(包含报告+源码+开题)

为了提高个性化书籍推荐信息管理的效率&#xff1b;充分利用现有资源&#xff1b;减少不必要的人力、物力和财政支出来实现管理人员更充分掌握个性化书籍推荐信息的管理&#xff1b;开发设计专用系统--基于爬虫的个性化书籍推荐系统来进行管理个性化书籍推荐信息&#xff0c;以…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

Pydantic + Function Calling的结合

1、Pydantic Pydantic 是一个 Python 库&#xff0c;用于数据验证和设置管理&#xff0c;通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发&#xff08;如 FastAPI&#xff09;、配置管理和数据解析&#xff0c;核心功能包括&#xff1a; 数据验证&#xff1a;通过…...

32单片机——基本定时器

STM32F103有众多的定时器&#xff0c;其中包括2个基本定时器&#xff08;TIM6和TIM7&#xff09;、4个通用定时器&#xff08;TIM2~TIM5&#xff09;、2个高级控制定时器&#xff08;TIM1和TIM8&#xff09;&#xff0c;这些定时器彼此完全独立&#xff0c;不共享任何资源 1、定…...

Java后端检查空条件查询

通过抛出运行异常&#xff1a;throw new RuntimeException("请输入查询条件&#xff01;");BranchWarehouseServiceImpl.java // 查询试剂交易&#xff08;入库/出库&#xff09;记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...

CTF show 数学不及格

拿到题目先查一下壳&#xff0c;看一下信息 发现是一个ELF文件&#xff0c;64位的 ​ 用IDA Pro 64 打开这个文件 ​ 然后点击F5进行伪代码转换 可以看到有五个if判断&#xff0c;第一个argc ! 5这个判断并没有起太大作用&#xff0c;主要是下面四个if判断 ​ 根据题目…...

leetcode_69.x的平方根

题目如下 &#xff1a; 看到题 &#xff0c;我们最原始的想法就是暴力解决: for(long long i 0;i<INT_MAX;i){if(i*ix){return i;}else if((i*i>x)&&((i-1)*(i-1)<x)){return i-1;}}我们直接开始遍历&#xff0c;我们是整数的平方根&#xff0c;所以我们分两…...