当前位置: 首页 > news >正文

时序预测 | MATLAB实现基于PSO-BiLSTM、BiLSTM时间序列预测对比

时序预测 | MATLAB实现基于PSO-BiLSTM、BiLSTM时间序列预测对比

目录

    • 时序预测 | MATLAB实现基于PSO-BiLSTM、BiLSTM时间序列预测对比
      • 效果一览
      • 基本描述
      • 程序设计
      • 参考资料

效果一览

1
2

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本描述

MATLAB实现基于PSO-BiLSTM、BiLSTM时间序列预测对比。
1.Matlab实现PSO-BiLSTM和BiLSTM神经网络时间序列预测;
2.输入数据为单变量时间序列数据,即一维数据;
3.运行环境Matlab2020及以上,依次运行Main1BiLSTMTS、Main2PSOBiLSTMTS、Main3CDM即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集;
BiLSTM(双向长短时记忆模型)与粒子群算法优化后的BiLSTM(PSOBiLSTM)对比实验,可用于风电、光伏等负荷预测,时序预测,数据为单输入单输出,PSO优化超参数为隐含层1节点数、隐含层2节点数、最大迭代次数和学习率。

4.命令窗口输出MAE、MAPE、RMSE和R2;

程序设计

  • 完整程序和数据下载:私信博主回复MATLAB实现基于PSO-BiLSTM、BiLSTM时间序列预测对比
for i=1:PopNum%随机初始化速度,随机初始化位置for j=1:dimif j==dim% % 隐含层节点与训练次数是整数 学习率是浮点型pop(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);elsepop(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endend
end% calculate the fitness_value of Pop
pbest = pop;
gbest = zeros(1,dim);
data1 = zeros(Maxstep,PopNum,dim);
data2 = zeros(Maxstep,PopNum);
for i = 1:PopNumfit(i) = fitness(pop(i,:),p_train,t_train,p_test,t_test);f_pbest(i) = fit(i);
end
g = min(find(f_pbest == min(f_pbest(1:PopNum))));
gbest = pbest(g,:);
f_gbest = f_pbest(g);%-------- in the loop -------------
for step = 1:Maxstepmbest =sum(pbest(:))/PopNum;% linear weigh factorb = 1-step/Maxstep*0.5;data1(step,:,:) = pop;data2(step,:) = fit;for i = 1:PopNuma = rand(1,dim);u = rand(1,dim);p = a.*pbest(i,:)+(1-a).*gbest;pop(i,:) = p + b*abs(mbest-pop(i,:)).*...log(1./u).*(1-2*(u >= 0.5));% boundary detectionfor j=1:dimif j ==dimif pop(i,j)>xmax(j) | pop(i,j)<xmin(j)pop(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);  %endelsepop(i,j)=round(pop(i,j));if pop(i,j)>xmax(j) | pop(i,j)<xmin(j)pop(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endendendfit(i) = fitness(pop(i,:),p_train,t_train,p_test,t_test);if fit(i) < f_pbest(i)pbest(i,:) = pop(i,:);f_pbest(i) = fit(i);endif f_pbest(i) < f_gbestgbest = pbest(i,:);f_gbest = f_pbest(i);endendtrace(step)=f_gbest;step,f_gbest,gbestresult(step,:)=gbest;
end
or i=1:N%随机初始化速度,随机初始化位置for j=1:Dif j==D% % 隐含层节点与训练次数是整数 学习率是浮点型x(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);elsex(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endendv(i,:)=rand(1,D);
end%------先计算各个粒子的适应度,并初始化Pi和Pg----------------------
for i=1:Np(i)=fitness(x(i,:),p_train,t_train,p_test,t_test);y(i,:)=x(i,:);end
[fg,index]=min(p);
pg = x(index,:);             %Pg为全局最优%------进入主要循环,按照公式依次迭代------------for t=1:Mfor i=1:Nv(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));x(i,:)=x(i,:)+v(i,:);for j=1:Dif j ~=Dx(i,j)=round(x(i,j));endif x(i,j)>xmax(j) | x(i,j)<xmin(j)if j==Dx(i,j)=(xmax(j)-xmin(j))*rand+xmin(j);  %elsex(i,j)=round((xmax(j)-xmin(j))*rand+xmin(j));  %endendendtemp=fitness(x(i,:),p_train,t_train,p_test,t_test);if temp<p(i)p(i)=temp;y(i,:)=x(i,:);endif p(i)<fgpg=y(i,:);fg=p(i);endendtrace(t)=fg;result(t,:)=pg;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127596777?spm=1001.2014.3001.5501
[2] https://download.csdn.net/download/kjm13182345320/86830096?spm=1001.2014.3001.5501

相关文章:

时序预测 | MATLAB实现基于PSO-BiLSTM、BiLSTM时间序列预测对比

时序预测 | MATLAB实现基于PSO-BiLSTM、BiLSTM时间序列预测对比 目录 时序预测 | MATLAB实现基于PSO-BiLSTM、BiLSTM时间序列预测对比效果一览基本描述程序设计参考资料 效果一览 基本描述 MATLAB实现基于PSO-BiLSTM、BiLSTM时间序列预测对比。 1.Matlab实现PSO-BiLSTM和BiLSTM…...

C# 生成唯一ID

1.首先通过nuget安装yitter.idgenerator 下面的三行代码搞定...

python怎么提取视频中的音频

目录 操作步骤 1. 安装MoviePy库&#xff1a; 2. 导入MoviePy库和所需的模块&#xff1a; 3. 提取音频&#xff1a; 可能遇到的问题 1. 编解码器支持&#xff1a; 2. 依赖项安装&#xff1a; 3. 文件路径问题&#xff1a; 4. 内存消耗&#xff1a; 5. 输出文件大小&a…...

学习设计模式之建造者模式,但是宝可梦

前言 作者在准备秋招中&#xff0c;学习设计模式&#xff0c;做点小笔记&#xff0c;用宝可梦为场景举例&#xff0c;有错误欢迎指出。 建造者模式 建造者模式是一种创建型模式&#xff0c;主要针对于某一个类有特别繁杂的属性&#xff0c;并且这些属性中有部分不是必须的。…...

数学建模:变异系数法

&#x1f506; 文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 变异系数法 变异系数法的设计原理是&#xff1a; 若某项指标的数值差异较大&#xff0c;能明确区分开各被评价对象&#xff0c;说明该指标的分辨信息丰富&#xff0c;因而应给该指标以较大的权重&#xf…...

paddle.load与pandas.read_pickle的速度对比(分别在有gpu 何无gpu 对比)

有GPU 平台 测试通用代码 import time import paddle import pandas as pd# 测试paddle.load start_time time.time() paddle_data paddle.load(long_attention_model) end_time time.time() print(f"Paddle load time: {end_time - start_time} seconds")# 测试…...

探讨uniapp的路由与页面栈及参数传递问题

1首先引入页面栈 框架以栈的形式管理当前所有页面&#xff0c; 当发生路由切换的时候&#xff0c;页面栈的表现如下&#xff1a; 页面的路由操作无非&#xff1a;初始化、打开新页面、页面重定向、页面返回、tab切换、重加载。 2页面路由 uni-app 有两种页面路由跳转方式&am…...

字节一面:你能讲一下跨域吗

前言 最近博主在字节面试中遇到这样一个面试题&#xff0c;这个问题也是前端面试的高频问题&#xff0c;作为一名前端开发工程师&#xff0c;我们日常开发中与后端联调时一定会遇到跨域的问题&#xff0c;只有处理好了跨域才能够与后端交互完成需求&#xff0c;所以深入学习跨域…...

leetcode 563.二叉树的坡度

⭐️ 题目描述 &#x1f31f; leetcode链接&#xff1a;https://leetcode.cn/problems/binary-tree-tilt/description/ 代码&#xff1a; class Solution { public:int childFind(TreeNode* root , int& sumTile) {if (root nullptr) {return 0; // 空树坡度为0}int l…...

【第1章 数据结构概述】

目录 一. 基本概念 1. 数据、数据元素、数据对象 2. 数据结构 二. 数据结构的分类 1. 数据的逻辑结构可分为两大类&#xff1a;a. 线性结构&#xff1b;b. 非线性结构 2. 数据的存储结构取决于四种基本的存储方法&#xff1a;顺序存储、链接存储、索引存储、散列存储 3. …...

【附安装包】MyEclipse2019安装教程

软件下载 软件&#xff1a;MyEclipse版本&#xff1a;2019语言&#xff1a;简体中文大小&#xff1a;1.86G安装环境&#xff1a;Win11/Win10/Win8/Win7硬件要求&#xff1a;CPU2.5GHz 内存4G(或更高&#xff09;下载通道①百度网盘丨下载链接&#xff1a;https://pan.baidu.co…...

poi-tl设置图片(通过word模板替换关键字,然后转pdf文件并下载)

选中图片右击 选择设置图片格式 例如word模板 maven依赖 <!-- java 读取word文件里面的加颜色的字体 转pdf 使用 --><dependency><groupId> e-iceblue </groupId><artifactId>spire.doc.free</artifactId><version>3.9.0</ver…...

[element-ui] el-tree 懒加载load

懒加载&#xff1a;点击节点时才进行该层数据的获取。 注意&#xff1a;使用了懒加载之后&#xff0c;一般情况下就可以不用绑定:data。 <el-tree :props"props" :load"loadNode" lazy></el-tree>懒加载—由于在点击节点时才进行该层数据的获取…...

【C++】使用 nlohmann 解析 json 文件

引言 nlohman json GitHub - nlohmann/json: JSON for Modern C 是一个为现代C&#xff08;C11&#xff09;设计的JSON解析库&#xff0c;主要特点是 易于集成&#xff0c;仅需一个头文件&#xff0c;无需安装依赖 易于使用&#xff0c;可以和STL无缝对接&#xff0c;使用体验…...

Nginx到底是什么,他能干什么?

目录 Ngnix是什么&#xff0c;它是用来做什么的呢&#xff1f; 一。Nginx简介 二&#xff0c;为什么要用Nginx呢&#xff1f; 二。Nginx应用 1.HTTP代理和反向代理 2.负载均衡 Ngnix是什么&#xff0c;它是用来做什么的呢&#xff1f; 一。Nginx简介 Nginx是enginex的简写&…...

如何判断一个java对象还活着

引用计数算法 引用计数器的算法是这样的&#xff1a;在对象中添加一个引用计数器&#xff0c;每当有一个地方引用它时&#xff0c;计数器值就加一&#xff1b;当引用失效时&#xff0c;计数器值就减一&#xff1b;任何时刻计数器为零的对象就是不可能再被使用的。 缺点&#x…...

Go语言基础之结构体

Go语言中没有“类”的概念&#xff0c;也不支持“类”的继承等面向对象的概念。Go语言中通过结构体的内嵌再配合接口比面向对象具有更高的扩展性和灵活性。 类型别名和自定义类型 自定义类型 在Go语言中有一些基本的数据类型&#xff0c;如string、整型、浮点型、布尔等数据…...

前端食堂技术周刊第 96 期:2023 CSS 状态、Nuxt 3.7、TypeScript 5.2、eBay 性能优化、贝塞尔曲线

美味值&#xff1a;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f; 口味&#xff1a;冰镇黑乌龙 食堂技术周刊仓库地址&#xff1a;https://github.com/Geekhyt/weekly 大家好&#xff0c;我是童欧巴。欢迎来到前端食堂技术周刊&#xff0c;我们先来看…...

一文总结Redis知识点

目录 为什么基于MySQL又出现Redis&#xff1f;Redis的优点&#xff1f;Redis支持的基本命令Redis支持的数据结构1 String2 List3 Set4 Sorted Set5 Hash6 Stream 消息队列7 Geospatial 地理空间8 Bitmap 位图9 Bitfield 位域10 HyperLogLog Redis是单线程还是多线程&#xff1f…...

ARM寄存器组

CM3 拥有通用寄存器 R0‐R15 以及一些特殊功能寄存器。 R0-R7&#xff0c;通用目的寄存器 R0-R7也被称为低组寄存器&#xff0c;所有指令可以访问它们&#xff0c;它们的字长为32位&#xff0c;复位后的初始值是不可预料的。 R8-R12&#xff0c;通用目的寄存器 R8-R12也被称…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了&#xff0c;要么要会员、要么写的乱七八糟。这里我整理一下&#xff0c;把问题说清楚并且给出代码&#xff0c;拿去用就行&#xff0c;照着葫芦画瓢。 问题 在继承QWebEngineView后&#xff0c;重写mousePressEvent或event函数无法捕获鼠标按下事…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...