当前位置: 首页 > news >正文

运用谱分解定理反求实对称矩阵

文章目录

  • 谱分解定理
  • 定理的运用

谱分解定理

设三阶实对称矩阵 A A A,若矩阵 A A A 的特征值为 λ 1 , λ 2 , λ 3 \lambda_1,\lambda_2,\lambda_3 λ1,λ2,λ3,对应的单位化特征向量分别为 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3两两正交,则 A = λ 1 α 1 α 1 T + λ 2 α 2 α 2 T + λ 3 α 3 α 3 T A = \lambda_1 \alpha_1 \alpha_1^{\mathrm{T}} + \lambda_2 \alpha_2 \alpha_2^{\mathrm{T}} + \lambda_3 \alpha_3 \alpha_3^{\mathrm{T}} A=λ1α1α1T+λ2α2α2T+λ3α3α3T

【注 1】在考研范围内,只适用于实对称矩阵。
【注 2】特征向量必须两两正交且单位化!

证明:三阶实对称矩阵 A A A 可相似对角化,存在正交矩阵 Q = ( α 1 , α 2 , α 3 ) Q=(\alpha_1,\alpha_2,\alpha_3) Q=(α1,α2,α3),使得 Q T A Q = Λ = [ λ 1 λ 2 λ 3 ] Q^{\mathrm{T}}AQ = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix} QTAQ=Λ= λ1λ2λ3

所以有: A = ( α 1 , α 2 , α 3 ) [ λ 1 λ 2 λ 3 ] [ α 1 T α 2 T α 3 T ] = λ 1 α 1 α 1 T + λ 2 α 2 α 2 T + λ 3 α 3 α 3 T A = (\alpha_1,\alpha_2,\alpha_3) \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix} \begin{bmatrix} \alpha_1^{\mathrm{T}} \\ \alpha_2^{\mathrm{T}} \\ \alpha_3^{\mathrm{T}} \end{bmatrix} = \lambda_1 \alpha_1 \alpha_1^{\mathrm{T}} + \lambda_2 \alpha_2 \alpha_2^{\mathrm{T}} + \lambda_3 \alpha_3 \alpha_3^{\mathrm{T}} A=(α1,α2,α3) λ1λ2λ3 α1Tα2Tα3T =λ1α1α1T+λ2α2α2T+λ3α3α3T

定理的运用

什么时候运用谱分解定理最方便?

(1)当特征值出现 0 0 0 时,运用定理可减少计算量(参见解法一);

(2)当特征值出现二重根 k k k 时,可先运用定理计算出具体的 A − k E A-kE AkE,再算出实对称矩阵 A A A(参见解法二);

(3)运用该定理甚至不需要求出所有的特征向量!

【例】设 3 3 3 阶实对称矩阵 A A A 的秩为 2 2 2 λ 1 = λ 2 = 6 \lambda_1=\lambda_2=6 λ1=λ2=6 A A A 的二重特征值,若 α 1 = ( 1 , 1 , 0 ) T , α 2 = ( 2 , 1 , 1 ) T , α 3 = ( − 1 , 2 , − 3 ) T \alpha_1=(1,1,0)^{\mathrm{T}},\alpha_2=(2,1,1)^{\mathrm{T}},\alpha_3=(-1,2,-3)^{\mathrm{T}} α1=(1,1,0)T,α2=(2,1,1)T,α3=(1,2,3)T,都是 A A A 属于特征值 6 6 6 的特征向量,求矩阵 A A A

【解法一】由 r ( A ) = 2 r(A)=2 r(A)=2 可得特征值 λ 1 = λ 2 = 6 , λ 3 = 0 \lambda_1=\lambda_2=6, \lambda_3=0 λ1=λ2=6,λ3=0,将 α 1 = ( 1 , 1 , 0 ) T , α 2 = ( 2 , 1 , 1 ) T \alpha_1=(1,1,0)^{\mathrm{T}},\alpha_2=(2,1,1)^{\mathrm{T}} α1=(1,1,0)T,α2=(2,1,1)T 进行单位正交化得: ξ 1 = 1 2 ( 1 , 1 , 0 ) T , ξ 2 = 1 6 ( 1 , − 1 , 2 ) T \xi_1 = \frac{1}{\sqrt{2}} (1,1,0)^{\mathrm{T}},\xi_2 = \frac{1}{\sqrt{6}}(1,-1,2)^{\mathrm{T}} ξ1=2 1(1,1,0)T,ξ2=6 1(1,1,2)T

运用谱分解定理:

A = λ 1 ξ 1 ξ 1 T + λ 2 ξ 2 ξ 2 T = 3 ξ 1 ξ 1 T + ξ 2 ξ 2 T = 3 [ 1 1 0 ] ( 1 , 1 , 0 ) + [ 1 − 1 2 ] ( 1 , − 1 , 2 ) = [ 4 2 2 2 4 − 2 2 − 2 4 ] \begin{aligned} A &= \lambda_1 \xi_1 \xi_1^{\mathrm{T}} + \lambda_2 \xi_2 \xi_2^{\mathrm{T}} \\ &= 3 \xi_1 \xi_1^{\mathrm{T}} + \xi_2 \xi_2^{\mathrm{T}} \\ &= 3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} (1,1,0) + \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} (1,-1,2) \\ &= \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & -2 \\ 2 & -2 & 4 \end{bmatrix} \end{aligned} A=λ1ξ1ξ1T+λ2ξ2ξ2T=3ξ1ξ1T+ξ2ξ2T=3 110 (1,1,0)+ 112 (1,1,2)= 422242224

【解法二】先求出 A A A 的另一特征值和对应的特征向量 λ 3 = 0 , α 3 = ( − 1 , 1 , 1 ) T \lambda_3=0,\alpha_3=(-1,1,1)^{\mathrm{T}} λ3=0,α3=(1,1,1)T,进行单位正交化: ξ 3 = 1 3 ( − 1 , 1 , 1 ) T \xi_3=\frac{1}{\sqrt{3}}(-1,1,1)^{\mathrm{T}} ξ3=3 1(1,1,1)T

由于 A A A 的特征值为 λ 1 = λ 2 = 6 , λ 3 = 0 \lambda_1=\lambda_2=6, \lambda_3=0 λ1=λ2=6,λ3=0,所以 A − 6 E A-6E A6E 的特征值为 λ 1 = λ 2 = 0 , λ 3 = − 6 \lambda_1=\lambda_2=0, \lambda_3=-6 λ1=λ2=0,λ3=6,注意到其对应的特征向量仍然不变,因此可以先求出 A − 6 E A-6E A6E,运用谱分解定理:

A − 6 E = λ 3 ξ 3 ξ 3 T = − 2 [ − 1 1 1 ] ( − 1 , 1 , 1 ) = [ − 2 2 2 2 − 2 − 2 2 − 2 − 2 ] \begin{aligned} A-6E &= \lambda_3 \xi_3 \xi_3^{\mathrm{T}} \\ &= -2 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} (-1,1,1) \\ &= \begin{bmatrix} -2 & 2 & 2 \\ 2 & -2 & -2 \\ 2 & -2 & -2 \end{bmatrix} \end{aligned} A6E=λ3ξ3ξ3T=2 111 (1,1,1)= 222222222

所以有:

A = ( A − 6 E ) + 6 E = [ − 2 2 2 2 − 2 − 2 2 − 2 − 2 ] + [ 6 6 6 ] = [ 4 2 2 2 4 − 2 2 − 2 4 ] \begin{aligned} A &= (A-6E) + 6E \\ &= \begin{bmatrix} -2 & 2 & 2 \\ 2 & -2 & -2 \\ 2 & -2 & -2 \end{bmatrix} + \begin{bmatrix} 6 & & \\ & 6 & \\ & & 6 \end{bmatrix} \\ &= \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & -2 \\ 2 & -2 & 4 \end{bmatrix} \end{aligned} A=(A6E)+6E= 222222222 + 666 = 422242224

相关文章:

运用谱分解定理反求实对称矩阵

文章目录 谱分解定理定理的运用 谱分解定理 设三阶实对称矩阵 A A A,若矩阵 A A A 的特征值为 λ 1 , λ 2 , λ 3 \lambda_1,\lambda_2,\lambda_3 λ1​,λ2​,λ3​,对应的单位化特征向量分别为 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α…...

Qt——Qt工作原理:事件驱动、信号与槽机制

Qt工作原理:事件驱动、信号与槽机制 Qt作为一个现代的GUI(图形用户界面)框架,采用了事件驱动的编程范式,并引入了信号与槽机制,以实现高度交互和松耦合的程序设计。下面详细解释了相关概念,以及…...

find ./* -type d -empty -exec touch {}/.gitkeep \;

这是一个 Linux 下的 find 命令,用于在所有空目录中创建 .gitkeep 文件。让我们来分解一下这个命令做了什么:- find ./* : 在当前目录及其子目录中查找。 -type d : 只查找目录类型的文件。 -empty : 只找出那些空的目…...

计算机行业前景展望

计算机行业的前景展望是非常广阔的。随着技术的快速发展和应用领域的不断拓展,计算机行业将继续扮演着重要的角色。以下是一些计算机行业前景的关键方面: 人工智能(AI)和机器学习(ML):AI和ML技术…...

TCP/UDP原理

文章目录 一、端口1. 端口的定义和作用2.服务端和客户端的区别3.常见的知名端口号有 二、TCP的原理1.TCP头部封装格式2.TCP可靠性机制三次握手确认机制四次挥手RST结束连接窗口机制 3.完整性校验4.TCP特征5.TCP的适用场景 三、UDP的原理1.UDP头部封装格式2.UDP特征3.UDP的适用场…...

操作符算数转换题

目录 1.交换两个变量(不创建临时变量) 2.统计二进制中1的个数 3.打印整数二进制的奇数位和偶数位 4.求两个数二进制中不同位的个数 5.【一维数组】有序序列合并 6.获得月份天数 7.变种水仙花数 8.选择题总结tips 这篇博文主要分享操作符&算…...

Centos7 安装 Docker

2年前写过一篇安装Docker的文档记录,当时安装有些麻烦,现在安装docker就非常容易了,而且安装完docker,自动也安装了docker compose,不用再去执行指令单独安装docker compose了,所以现在再记录一下&#xff…...

Java虚拟机内部组成

1、栈区 public class Math {public int compute(){//一个方法对应一块栈帧内存区域int a l;int b 2;int c (a b)*10;return c; } public static void main(String[] args){Math math new, Math() ;math.compute() ;System.out.println("test");}} 栈是先进后出…...

python遍历文件夹下的所有子文件夹,并将指定的文件复制到指定目录

python遍历文件夹下的所有子文件夹,并将指定的文件复制到指定目录 需求复制单个文件夹遍历所有子文件夹中的文件,并复制代码封装 需求 在1文件夹中有1,2两个文件夹 将这两个文件夹中的文件复制到 after_copy中 复制单个文件夹 # coding: ut…...

[golang 流媒体在线直播系统] 1.直播的简单介绍以及借助腾讯云直播实现在线直播

一.直播的简单介绍 1.介绍 直播,应该不陌生,有电视直播、网络主播、游戏直播、体育直播、在线教育直播等等,那么要实现在线直播的话就 必须要有 “ 流媒体在线直播服务器 ”. “流媒体在线直播服务器 ”不仅可以 实现游戏、赛事、电商、媒体、教育等行业的直播, 还可以实现 …...

C# 中操作集合的方法

Add&#xff1a;向集合中添加元素。 List<int> numbers new List<int>(){ 1, 2, 3 }; numbers.Add(4); // numbers 现在为 { 1, 2, 3, 4 }Remove&#xff1a;从集合中移除指定的元素。 List<int> numbers new List<int>(){ 1, 2, 3, 4 }; numbers.Re…...

pytorch学习(8)——现有网络模型的使用以及修改

1 vgg16模型 1.1 vgg16模型的下载 采用torchvision中的vgg16模型&#xff0c;能够实现1000个类型的图像分类&#xff0c;VGG模型在AlexNet的基础上使用3*3小卷积核&#xff0c;增加网络深度&#xff0c;具有很好的泛化能力。 首先下载vgg16模型&#xff0c;python代码如下&…...

get和post请求的区别

GET和POST是HTTP请求的两种方法,其区别如下 ① GET请求表示从指定的服务器中获取数据(请求数据),比如查询用户信息;POST请求表示将数据提交到指定的服务器进行处理(发送数据), ② GET请求是一个幂等的请求,一般用于对服务器资源不会产生影响的场景,比如说请求一个网友的…...

extern “C”关键字的作用

目录 概述C和C在函数调用和变量命名等方面的差异示例总结 概述 extern "C"是用于在C中声明使用C语言编写的函数和变量的关键字。C和C在函数调用和变量命名等方面存在一些差异&#xff0c;为了在C代码中正确地使用C语言的函数和变量&#xff0c;需要使用extern "…...

使用ffmpeg截取视频片段

本文将介绍2中使用ffmpeg截取视频的方法 指定截取视频的 开始时间 和 结束时间&#xff0c;进行视频截取指定截取视频的 开始时间 和 截取的秒数&#xff0c;进行视频截取 两种截取方式的命令行如下 截取某一时间段视频 优先使用 ffmpeg -i ./input.mp4 -c:v libx264 -crf…...

Python教程(11)——Python中的字典dict的用法介绍

dict的用法介绍 创建字典访问字典修改字典删除字典字典的相关函数 列表虽然好&#xff0c;但是如果需要快速的数据查找&#xff0c;就必须进行需要遍历&#xff0c;也就是最坏情况需要遍历完一遍才能找到需要的那个数据&#xff0c;时间复杂度是O(n)&#xff0c;显然这个速度是…...

三道dfs题

一&#xff1a;1114. 棋盘问题 - AcWing题库 分别枚举行和列&#xff0c;能填的地方就填&#xff0c;dfs就行 #include <iostream> using namespace std;const int N 10; char g[N][N]; int n, k; int res; bool st[N];void dfs(int u, int cnt) // u枚举行 {if(cnt …...

Seaborn数据可视化(四)

目录 1.绘制箱线图 2.绘制小提琴图 3.绘制多面板图 4.绘制等高线图 5.绘制热力图 1.绘制箱线图 import seaborn as sns import matplotlib.pyplot as plt # 加载示例数据&#xff08;例如&#xff0c;使用seaborn自带的数据集&#xff09; tips sns.load_dataset("t…...

kubernetes deploy standalone mysql demo

kubernetes 集群内部署 单节点 mysql ansible all -m shell -a "mkdir -p /mnt/mysql/data"cat mysql-pv-pvc.yaml apiVersion: v1 kind: PersistentVolume metadata:name: mysql-pv-volumelabels:type: local spec:storageClassName: manualcapacity:storage: 5Gi…...

【Map】Map集合有序与无序测试案例:HashMap,TreeMap,LinkedHashMap(121)

简单介绍常用的三种Map&#xff1a;不足之处&#xff0c;欢迎指正&#xff01; HashMap&#xff1a;put数据是无序的&#xff1b; TreeMap&#xff1a;key值按一定的顺序排序&#xff1b;数字做key&#xff0c;put数据是有序&#xff0c;非数字字符串做key&#xff0c;put数据…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...