当前位置: 首页 > news >正文

运用谱分解定理反求实对称矩阵

文章目录

  • 谱分解定理
  • 定理的运用

谱分解定理

设三阶实对称矩阵 A A A,若矩阵 A A A 的特征值为 λ 1 , λ 2 , λ 3 \lambda_1,\lambda_2,\lambda_3 λ1,λ2,λ3,对应的单位化特征向量分别为 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3两两正交,则 A = λ 1 α 1 α 1 T + λ 2 α 2 α 2 T + λ 3 α 3 α 3 T A = \lambda_1 \alpha_1 \alpha_1^{\mathrm{T}} + \lambda_2 \alpha_2 \alpha_2^{\mathrm{T}} + \lambda_3 \alpha_3 \alpha_3^{\mathrm{T}} A=λ1α1α1T+λ2α2α2T+λ3α3α3T

【注 1】在考研范围内,只适用于实对称矩阵。
【注 2】特征向量必须两两正交且单位化!

证明:三阶实对称矩阵 A A A 可相似对角化,存在正交矩阵 Q = ( α 1 , α 2 , α 3 ) Q=(\alpha_1,\alpha_2,\alpha_3) Q=(α1,α2,α3),使得 Q T A Q = Λ = [ λ 1 λ 2 λ 3 ] Q^{\mathrm{T}}AQ = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix} QTAQ=Λ= λ1λ2λ3

所以有: A = ( α 1 , α 2 , α 3 ) [ λ 1 λ 2 λ 3 ] [ α 1 T α 2 T α 3 T ] = λ 1 α 1 α 1 T + λ 2 α 2 α 2 T + λ 3 α 3 α 3 T A = (\alpha_1,\alpha_2,\alpha_3) \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix} \begin{bmatrix} \alpha_1^{\mathrm{T}} \\ \alpha_2^{\mathrm{T}} \\ \alpha_3^{\mathrm{T}} \end{bmatrix} = \lambda_1 \alpha_1 \alpha_1^{\mathrm{T}} + \lambda_2 \alpha_2 \alpha_2^{\mathrm{T}} + \lambda_3 \alpha_3 \alpha_3^{\mathrm{T}} A=(α1,α2,α3) λ1λ2λ3 α1Tα2Tα3T =λ1α1α1T+λ2α2α2T+λ3α3α3T

定理的运用

什么时候运用谱分解定理最方便?

(1)当特征值出现 0 0 0 时,运用定理可减少计算量(参见解法一);

(2)当特征值出现二重根 k k k 时,可先运用定理计算出具体的 A − k E A-kE AkE,再算出实对称矩阵 A A A(参见解法二);

(3)运用该定理甚至不需要求出所有的特征向量!

【例】设 3 3 3 阶实对称矩阵 A A A 的秩为 2 2 2 λ 1 = λ 2 = 6 \lambda_1=\lambda_2=6 λ1=λ2=6 A A A 的二重特征值,若 α 1 = ( 1 , 1 , 0 ) T , α 2 = ( 2 , 1 , 1 ) T , α 3 = ( − 1 , 2 , − 3 ) T \alpha_1=(1,1,0)^{\mathrm{T}},\alpha_2=(2,1,1)^{\mathrm{T}},\alpha_3=(-1,2,-3)^{\mathrm{T}} α1=(1,1,0)T,α2=(2,1,1)T,α3=(1,2,3)T,都是 A A A 属于特征值 6 6 6 的特征向量,求矩阵 A A A

【解法一】由 r ( A ) = 2 r(A)=2 r(A)=2 可得特征值 λ 1 = λ 2 = 6 , λ 3 = 0 \lambda_1=\lambda_2=6, \lambda_3=0 λ1=λ2=6,λ3=0,将 α 1 = ( 1 , 1 , 0 ) T , α 2 = ( 2 , 1 , 1 ) T \alpha_1=(1,1,0)^{\mathrm{T}},\alpha_2=(2,1,1)^{\mathrm{T}} α1=(1,1,0)T,α2=(2,1,1)T 进行单位正交化得: ξ 1 = 1 2 ( 1 , 1 , 0 ) T , ξ 2 = 1 6 ( 1 , − 1 , 2 ) T \xi_1 = \frac{1}{\sqrt{2}} (1,1,0)^{\mathrm{T}},\xi_2 = \frac{1}{\sqrt{6}}(1,-1,2)^{\mathrm{T}} ξ1=2 1(1,1,0)T,ξ2=6 1(1,1,2)T

运用谱分解定理:

A = λ 1 ξ 1 ξ 1 T + λ 2 ξ 2 ξ 2 T = 3 ξ 1 ξ 1 T + ξ 2 ξ 2 T = 3 [ 1 1 0 ] ( 1 , 1 , 0 ) + [ 1 − 1 2 ] ( 1 , − 1 , 2 ) = [ 4 2 2 2 4 − 2 2 − 2 4 ] \begin{aligned} A &= \lambda_1 \xi_1 \xi_1^{\mathrm{T}} + \lambda_2 \xi_2 \xi_2^{\mathrm{T}} \\ &= 3 \xi_1 \xi_1^{\mathrm{T}} + \xi_2 \xi_2^{\mathrm{T}} \\ &= 3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} (1,1,0) + \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} (1,-1,2) \\ &= \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & -2 \\ 2 & -2 & 4 \end{bmatrix} \end{aligned} A=λ1ξ1ξ1T+λ2ξ2ξ2T=3ξ1ξ1T+ξ2ξ2T=3 110 (1,1,0)+ 112 (1,1,2)= 422242224

【解法二】先求出 A A A 的另一特征值和对应的特征向量 λ 3 = 0 , α 3 = ( − 1 , 1 , 1 ) T \lambda_3=0,\alpha_3=(-1,1,1)^{\mathrm{T}} λ3=0,α3=(1,1,1)T,进行单位正交化: ξ 3 = 1 3 ( − 1 , 1 , 1 ) T \xi_3=\frac{1}{\sqrt{3}}(-1,1,1)^{\mathrm{T}} ξ3=3 1(1,1,1)T

由于 A A A 的特征值为 λ 1 = λ 2 = 6 , λ 3 = 0 \lambda_1=\lambda_2=6, \lambda_3=0 λ1=λ2=6,λ3=0,所以 A − 6 E A-6E A6E 的特征值为 λ 1 = λ 2 = 0 , λ 3 = − 6 \lambda_1=\lambda_2=0, \lambda_3=-6 λ1=λ2=0,λ3=6,注意到其对应的特征向量仍然不变,因此可以先求出 A − 6 E A-6E A6E,运用谱分解定理:

A − 6 E = λ 3 ξ 3 ξ 3 T = − 2 [ − 1 1 1 ] ( − 1 , 1 , 1 ) = [ − 2 2 2 2 − 2 − 2 2 − 2 − 2 ] \begin{aligned} A-6E &= \lambda_3 \xi_3 \xi_3^{\mathrm{T}} \\ &= -2 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} (-1,1,1) \\ &= \begin{bmatrix} -2 & 2 & 2 \\ 2 & -2 & -2 \\ 2 & -2 & -2 \end{bmatrix} \end{aligned} A6E=λ3ξ3ξ3T=2 111 (1,1,1)= 222222222

所以有:

A = ( A − 6 E ) + 6 E = [ − 2 2 2 2 − 2 − 2 2 − 2 − 2 ] + [ 6 6 6 ] = [ 4 2 2 2 4 − 2 2 − 2 4 ] \begin{aligned} A &= (A-6E) + 6E \\ &= \begin{bmatrix} -2 & 2 & 2 \\ 2 & -2 & -2 \\ 2 & -2 & -2 \end{bmatrix} + \begin{bmatrix} 6 & & \\ & 6 & \\ & & 6 \end{bmatrix} \\ &= \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & -2 \\ 2 & -2 & 4 \end{bmatrix} \end{aligned} A=(A6E)+6E= 222222222 + 666 = 422242224

相关文章:

运用谱分解定理反求实对称矩阵

文章目录 谱分解定理定理的运用 谱分解定理 设三阶实对称矩阵 A A A,若矩阵 A A A 的特征值为 λ 1 , λ 2 , λ 3 \lambda_1,\lambda_2,\lambda_3 λ1​,λ2​,λ3​,对应的单位化特征向量分别为 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α…...

Qt——Qt工作原理:事件驱动、信号与槽机制

Qt工作原理:事件驱动、信号与槽机制 Qt作为一个现代的GUI(图形用户界面)框架,采用了事件驱动的编程范式,并引入了信号与槽机制,以实现高度交互和松耦合的程序设计。下面详细解释了相关概念,以及…...

find ./* -type d -empty -exec touch {}/.gitkeep \;

这是一个 Linux 下的 find 命令,用于在所有空目录中创建 .gitkeep 文件。让我们来分解一下这个命令做了什么:- find ./* : 在当前目录及其子目录中查找。 -type d : 只查找目录类型的文件。 -empty : 只找出那些空的目…...

计算机行业前景展望

计算机行业的前景展望是非常广阔的。随着技术的快速发展和应用领域的不断拓展,计算机行业将继续扮演着重要的角色。以下是一些计算机行业前景的关键方面: 人工智能(AI)和机器学习(ML):AI和ML技术…...

TCP/UDP原理

文章目录 一、端口1. 端口的定义和作用2.服务端和客户端的区别3.常见的知名端口号有 二、TCP的原理1.TCP头部封装格式2.TCP可靠性机制三次握手确认机制四次挥手RST结束连接窗口机制 3.完整性校验4.TCP特征5.TCP的适用场景 三、UDP的原理1.UDP头部封装格式2.UDP特征3.UDP的适用场…...

操作符算数转换题

目录 1.交换两个变量(不创建临时变量) 2.统计二进制中1的个数 3.打印整数二进制的奇数位和偶数位 4.求两个数二进制中不同位的个数 5.【一维数组】有序序列合并 6.获得月份天数 7.变种水仙花数 8.选择题总结tips 这篇博文主要分享操作符&算…...

Centos7 安装 Docker

2年前写过一篇安装Docker的文档记录,当时安装有些麻烦,现在安装docker就非常容易了,而且安装完docker,自动也安装了docker compose,不用再去执行指令单独安装docker compose了,所以现在再记录一下&#xff…...

Java虚拟机内部组成

1、栈区 public class Math {public int compute(){//一个方法对应一块栈帧内存区域int a l;int b 2;int c (a b)*10;return c; } public static void main(String[] args){Math math new, Math() ;math.compute() ;System.out.println("test");}} 栈是先进后出…...

python遍历文件夹下的所有子文件夹,并将指定的文件复制到指定目录

python遍历文件夹下的所有子文件夹,并将指定的文件复制到指定目录 需求复制单个文件夹遍历所有子文件夹中的文件,并复制代码封装 需求 在1文件夹中有1,2两个文件夹 将这两个文件夹中的文件复制到 after_copy中 复制单个文件夹 # coding: ut…...

[golang 流媒体在线直播系统] 1.直播的简单介绍以及借助腾讯云直播实现在线直播

一.直播的简单介绍 1.介绍 直播,应该不陌生,有电视直播、网络主播、游戏直播、体育直播、在线教育直播等等,那么要实现在线直播的话就 必须要有 “ 流媒体在线直播服务器 ”. “流媒体在线直播服务器 ”不仅可以 实现游戏、赛事、电商、媒体、教育等行业的直播, 还可以实现 …...

C# 中操作集合的方法

Add&#xff1a;向集合中添加元素。 List<int> numbers new List<int>(){ 1, 2, 3 }; numbers.Add(4); // numbers 现在为 { 1, 2, 3, 4 }Remove&#xff1a;从集合中移除指定的元素。 List<int> numbers new List<int>(){ 1, 2, 3, 4 }; numbers.Re…...

pytorch学习(8)——现有网络模型的使用以及修改

1 vgg16模型 1.1 vgg16模型的下载 采用torchvision中的vgg16模型&#xff0c;能够实现1000个类型的图像分类&#xff0c;VGG模型在AlexNet的基础上使用3*3小卷积核&#xff0c;增加网络深度&#xff0c;具有很好的泛化能力。 首先下载vgg16模型&#xff0c;python代码如下&…...

get和post请求的区别

GET和POST是HTTP请求的两种方法,其区别如下 ① GET请求表示从指定的服务器中获取数据(请求数据),比如查询用户信息;POST请求表示将数据提交到指定的服务器进行处理(发送数据), ② GET请求是一个幂等的请求,一般用于对服务器资源不会产生影响的场景,比如说请求一个网友的…...

extern “C”关键字的作用

目录 概述C和C在函数调用和变量命名等方面的差异示例总结 概述 extern "C"是用于在C中声明使用C语言编写的函数和变量的关键字。C和C在函数调用和变量命名等方面存在一些差异&#xff0c;为了在C代码中正确地使用C语言的函数和变量&#xff0c;需要使用extern "…...

使用ffmpeg截取视频片段

本文将介绍2中使用ffmpeg截取视频的方法 指定截取视频的 开始时间 和 结束时间&#xff0c;进行视频截取指定截取视频的 开始时间 和 截取的秒数&#xff0c;进行视频截取 两种截取方式的命令行如下 截取某一时间段视频 优先使用 ffmpeg -i ./input.mp4 -c:v libx264 -crf…...

Python教程(11)——Python中的字典dict的用法介绍

dict的用法介绍 创建字典访问字典修改字典删除字典字典的相关函数 列表虽然好&#xff0c;但是如果需要快速的数据查找&#xff0c;就必须进行需要遍历&#xff0c;也就是最坏情况需要遍历完一遍才能找到需要的那个数据&#xff0c;时间复杂度是O(n)&#xff0c;显然这个速度是…...

三道dfs题

一&#xff1a;1114. 棋盘问题 - AcWing题库 分别枚举行和列&#xff0c;能填的地方就填&#xff0c;dfs就行 #include <iostream> using namespace std;const int N 10; char g[N][N]; int n, k; int res; bool st[N];void dfs(int u, int cnt) // u枚举行 {if(cnt …...

Seaborn数据可视化(四)

目录 1.绘制箱线图 2.绘制小提琴图 3.绘制多面板图 4.绘制等高线图 5.绘制热力图 1.绘制箱线图 import seaborn as sns import matplotlib.pyplot as plt # 加载示例数据&#xff08;例如&#xff0c;使用seaborn自带的数据集&#xff09; tips sns.load_dataset("t…...

kubernetes deploy standalone mysql demo

kubernetes 集群内部署 单节点 mysql ansible all -m shell -a "mkdir -p /mnt/mysql/data"cat mysql-pv-pvc.yaml apiVersion: v1 kind: PersistentVolume metadata:name: mysql-pv-volumelabels:type: local spec:storageClassName: manualcapacity:storage: 5Gi…...

【Map】Map集合有序与无序测试案例:HashMap,TreeMap,LinkedHashMap(121)

简单介绍常用的三种Map&#xff1a;不足之处&#xff0c;欢迎指正&#xff01; HashMap&#xff1a;put数据是无序的&#xff1b; TreeMap&#xff1a;key值按一定的顺序排序&#xff1b;数字做key&#xff0c;put数据是有序&#xff0c;非数字字符串做key&#xff0c;put数据…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...