当前位置: 首页 > news >正文

运用谱分解定理反求实对称矩阵

文章目录

  • 谱分解定理
  • 定理的运用

谱分解定理

设三阶实对称矩阵 A A A,若矩阵 A A A 的特征值为 λ 1 , λ 2 , λ 3 \lambda_1,\lambda_2,\lambda_3 λ1,λ2,λ3,对应的单位化特征向量分别为 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3两两正交,则 A = λ 1 α 1 α 1 T + λ 2 α 2 α 2 T + λ 3 α 3 α 3 T A = \lambda_1 \alpha_1 \alpha_1^{\mathrm{T}} + \lambda_2 \alpha_2 \alpha_2^{\mathrm{T}} + \lambda_3 \alpha_3 \alpha_3^{\mathrm{T}} A=λ1α1α1T+λ2α2α2T+λ3α3α3T

【注 1】在考研范围内,只适用于实对称矩阵。
【注 2】特征向量必须两两正交且单位化!

证明:三阶实对称矩阵 A A A 可相似对角化,存在正交矩阵 Q = ( α 1 , α 2 , α 3 ) Q=(\alpha_1,\alpha_2,\alpha_3) Q=(α1,α2,α3),使得 Q T A Q = Λ = [ λ 1 λ 2 λ 3 ] Q^{\mathrm{T}}AQ = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix} QTAQ=Λ= λ1λ2λ3

所以有: A = ( α 1 , α 2 , α 3 ) [ λ 1 λ 2 λ 3 ] [ α 1 T α 2 T α 3 T ] = λ 1 α 1 α 1 T + λ 2 α 2 α 2 T + λ 3 α 3 α 3 T A = (\alpha_1,\alpha_2,\alpha_3) \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix} \begin{bmatrix} \alpha_1^{\mathrm{T}} \\ \alpha_2^{\mathrm{T}} \\ \alpha_3^{\mathrm{T}} \end{bmatrix} = \lambda_1 \alpha_1 \alpha_1^{\mathrm{T}} + \lambda_2 \alpha_2 \alpha_2^{\mathrm{T}} + \lambda_3 \alpha_3 \alpha_3^{\mathrm{T}} A=(α1,α2,α3) λ1λ2λ3 α1Tα2Tα3T =λ1α1α1T+λ2α2α2T+λ3α3α3T

定理的运用

什么时候运用谱分解定理最方便?

(1)当特征值出现 0 0 0 时,运用定理可减少计算量(参见解法一);

(2)当特征值出现二重根 k k k 时,可先运用定理计算出具体的 A − k E A-kE AkE,再算出实对称矩阵 A A A(参见解法二);

(3)运用该定理甚至不需要求出所有的特征向量!

【例】设 3 3 3 阶实对称矩阵 A A A 的秩为 2 2 2 λ 1 = λ 2 = 6 \lambda_1=\lambda_2=6 λ1=λ2=6 A A A 的二重特征值,若 α 1 = ( 1 , 1 , 0 ) T , α 2 = ( 2 , 1 , 1 ) T , α 3 = ( − 1 , 2 , − 3 ) T \alpha_1=(1,1,0)^{\mathrm{T}},\alpha_2=(2,1,1)^{\mathrm{T}},\alpha_3=(-1,2,-3)^{\mathrm{T}} α1=(1,1,0)T,α2=(2,1,1)T,α3=(1,2,3)T,都是 A A A 属于特征值 6 6 6 的特征向量,求矩阵 A A A

【解法一】由 r ( A ) = 2 r(A)=2 r(A)=2 可得特征值 λ 1 = λ 2 = 6 , λ 3 = 0 \lambda_1=\lambda_2=6, \lambda_3=0 λ1=λ2=6,λ3=0,将 α 1 = ( 1 , 1 , 0 ) T , α 2 = ( 2 , 1 , 1 ) T \alpha_1=(1,1,0)^{\mathrm{T}},\alpha_2=(2,1,1)^{\mathrm{T}} α1=(1,1,0)T,α2=(2,1,1)T 进行单位正交化得: ξ 1 = 1 2 ( 1 , 1 , 0 ) T , ξ 2 = 1 6 ( 1 , − 1 , 2 ) T \xi_1 = \frac{1}{\sqrt{2}} (1,1,0)^{\mathrm{T}},\xi_2 = \frac{1}{\sqrt{6}}(1,-1,2)^{\mathrm{T}} ξ1=2 1(1,1,0)T,ξ2=6 1(1,1,2)T

运用谱分解定理:

A = λ 1 ξ 1 ξ 1 T + λ 2 ξ 2 ξ 2 T = 3 ξ 1 ξ 1 T + ξ 2 ξ 2 T = 3 [ 1 1 0 ] ( 1 , 1 , 0 ) + [ 1 − 1 2 ] ( 1 , − 1 , 2 ) = [ 4 2 2 2 4 − 2 2 − 2 4 ] \begin{aligned} A &= \lambda_1 \xi_1 \xi_1^{\mathrm{T}} + \lambda_2 \xi_2 \xi_2^{\mathrm{T}} \\ &= 3 \xi_1 \xi_1^{\mathrm{T}} + \xi_2 \xi_2^{\mathrm{T}} \\ &= 3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} (1,1,0) + \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} (1,-1,2) \\ &= \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & -2 \\ 2 & -2 & 4 \end{bmatrix} \end{aligned} A=λ1ξ1ξ1T+λ2ξ2ξ2T=3ξ1ξ1T+ξ2ξ2T=3 110 (1,1,0)+ 112 (1,1,2)= 422242224

【解法二】先求出 A A A 的另一特征值和对应的特征向量 λ 3 = 0 , α 3 = ( − 1 , 1 , 1 ) T \lambda_3=0,\alpha_3=(-1,1,1)^{\mathrm{T}} λ3=0,α3=(1,1,1)T,进行单位正交化: ξ 3 = 1 3 ( − 1 , 1 , 1 ) T \xi_3=\frac{1}{\sqrt{3}}(-1,1,1)^{\mathrm{T}} ξ3=3 1(1,1,1)T

由于 A A A 的特征值为 λ 1 = λ 2 = 6 , λ 3 = 0 \lambda_1=\lambda_2=6, \lambda_3=0 λ1=λ2=6,λ3=0,所以 A − 6 E A-6E A6E 的特征值为 λ 1 = λ 2 = 0 , λ 3 = − 6 \lambda_1=\lambda_2=0, \lambda_3=-6 λ1=λ2=0,λ3=6,注意到其对应的特征向量仍然不变,因此可以先求出 A − 6 E A-6E A6E,运用谱分解定理:

A − 6 E = λ 3 ξ 3 ξ 3 T = − 2 [ − 1 1 1 ] ( − 1 , 1 , 1 ) = [ − 2 2 2 2 − 2 − 2 2 − 2 − 2 ] \begin{aligned} A-6E &= \lambda_3 \xi_3 \xi_3^{\mathrm{T}} \\ &= -2 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} (-1,1,1) \\ &= \begin{bmatrix} -2 & 2 & 2 \\ 2 & -2 & -2 \\ 2 & -2 & -2 \end{bmatrix} \end{aligned} A6E=λ3ξ3ξ3T=2 111 (1,1,1)= 222222222

所以有:

A = ( A − 6 E ) + 6 E = [ − 2 2 2 2 − 2 − 2 2 − 2 − 2 ] + [ 6 6 6 ] = [ 4 2 2 2 4 − 2 2 − 2 4 ] \begin{aligned} A &= (A-6E) + 6E \\ &= \begin{bmatrix} -2 & 2 & 2 \\ 2 & -2 & -2 \\ 2 & -2 & -2 \end{bmatrix} + \begin{bmatrix} 6 & & \\ & 6 & \\ & & 6 \end{bmatrix} \\ &= \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & -2 \\ 2 & -2 & 4 \end{bmatrix} \end{aligned} A=(A6E)+6E= 222222222 + 666 = 422242224

相关文章:

运用谱分解定理反求实对称矩阵

文章目录 谱分解定理定理的运用 谱分解定理 设三阶实对称矩阵 A A A,若矩阵 A A A 的特征值为 λ 1 , λ 2 , λ 3 \lambda_1,\lambda_2,\lambda_3 λ1​,λ2​,λ3​,对应的单位化特征向量分别为 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α…...

Qt——Qt工作原理:事件驱动、信号与槽机制

Qt工作原理:事件驱动、信号与槽机制 Qt作为一个现代的GUI(图形用户界面)框架,采用了事件驱动的编程范式,并引入了信号与槽机制,以实现高度交互和松耦合的程序设计。下面详细解释了相关概念,以及…...

find ./* -type d -empty -exec touch {}/.gitkeep \;

这是一个 Linux 下的 find 命令,用于在所有空目录中创建 .gitkeep 文件。让我们来分解一下这个命令做了什么:- find ./* : 在当前目录及其子目录中查找。 -type d : 只查找目录类型的文件。 -empty : 只找出那些空的目…...

计算机行业前景展望

计算机行业的前景展望是非常广阔的。随着技术的快速发展和应用领域的不断拓展,计算机行业将继续扮演着重要的角色。以下是一些计算机行业前景的关键方面: 人工智能(AI)和机器学习(ML):AI和ML技术…...

TCP/UDP原理

文章目录 一、端口1. 端口的定义和作用2.服务端和客户端的区别3.常见的知名端口号有 二、TCP的原理1.TCP头部封装格式2.TCP可靠性机制三次握手确认机制四次挥手RST结束连接窗口机制 3.完整性校验4.TCP特征5.TCP的适用场景 三、UDP的原理1.UDP头部封装格式2.UDP特征3.UDP的适用场…...

操作符算数转换题

目录 1.交换两个变量(不创建临时变量) 2.统计二进制中1的个数 3.打印整数二进制的奇数位和偶数位 4.求两个数二进制中不同位的个数 5.【一维数组】有序序列合并 6.获得月份天数 7.变种水仙花数 8.选择题总结tips 这篇博文主要分享操作符&算…...

Centos7 安装 Docker

2年前写过一篇安装Docker的文档记录,当时安装有些麻烦,现在安装docker就非常容易了,而且安装完docker,自动也安装了docker compose,不用再去执行指令单独安装docker compose了,所以现在再记录一下&#xff…...

Java虚拟机内部组成

1、栈区 public class Math {public int compute(){//一个方法对应一块栈帧内存区域int a l;int b 2;int c (a b)*10;return c; } public static void main(String[] args){Math math new, Math() ;math.compute() ;System.out.println("test");}} 栈是先进后出…...

python遍历文件夹下的所有子文件夹,并将指定的文件复制到指定目录

python遍历文件夹下的所有子文件夹,并将指定的文件复制到指定目录 需求复制单个文件夹遍历所有子文件夹中的文件,并复制代码封装 需求 在1文件夹中有1,2两个文件夹 将这两个文件夹中的文件复制到 after_copy中 复制单个文件夹 # coding: ut…...

[golang 流媒体在线直播系统] 1.直播的简单介绍以及借助腾讯云直播实现在线直播

一.直播的简单介绍 1.介绍 直播,应该不陌生,有电视直播、网络主播、游戏直播、体育直播、在线教育直播等等,那么要实现在线直播的话就 必须要有 “ 流媒体在线直播服务器 ”. “流媒体在线直播服务器 ”不仅可以 实现游戏、赛事、电商、媒体、教育等行业的直播, 还可以实现 …...

C# 中操作集合的方法

Add&#xff1a;向集合中添加元素。 List<int> numbers new List<int>(){ 1, 2, 3 }; numbers.Add(4); // numbers 现在为 { 1, 2, 3, 4 }Remove&#xff1a;从集合中移除指定的元素。 List<int> numbers new List<int>(){ 1, 2, 3, 4 }; numbers.Re…...

pytorch学习(8)——现有网络模型的使用以及修改

1 vgg16模型 1.1 vgg16模型的下载 采用torchvision中的vgg16模型&#xff0c;能够实现1000个类型的图像分类&#xff0c;VGG模型在AlexNet的基础上使用3*3小卷积核&#xff0c;增加网络深度&#xff0c;具有很好的泛化能力。 首先下载vgg16模型&#xff0c;python代码如下&…...

get和post请求的区别

GET和POST是HTTP请求的两种方法,其区别如下 ① GET请求表示从指定的服务器中获取数据(请求数据),比如查询用户信息;POST请求表示将数据提交到指定的服务器进行处理(发送数据), ② GET请求是一个幂等的请求,一般用于对服务器资源不会产生影响的场景,比如说请求一个网友的…...

extern “C”关键字的作用

目录 概述C和C在函数调用和变量命名等方面的差异示例总结 概述 extern "C"是用于在C中声明使用C语言编写的函数和变量的关键字。C和C在函数调用和变量命名等方面存在一些差异&#xff0c;为了在C代码中正确地使用C语言的函数和变量&#xff0c;需要使用extern "…...

使用ffmpeg截取视频片段

本文将介绍2中使用ffmpeg截取视频的方法 指定截取视频的 开始时间 和 结束时间&#xff0c;进行视频截取指定截取视频的 开始时间 和 截取的秒数&#xff0c;进行视频截取 两种截取方式的命令行如下 截取某一时间段视频 优先使用 ffmpeg -i ./input.mp4 -c:v libx264 -crf…...

Python教程(11)——Python中的字典dict的用法介绍

dict的用法介绍 创建字典访问字典修改字典删除字典字典的相关函数 列表虽然好&#xff0c;但是如果需要快速的数据查找&#xff0c;就必须进行需要遍历&#xff0c;也就是最坏情况需要遍历完一遍才能找到需要的那个数据&#xff0c;时间复杂度是O(n)&#xff0c;显然这个速度是…...

三道dfs题

一&#xff1a;1114. 棋盘问题 - AcWing题库 分别枚举行和列&#xff0c;能填的地方就填&#xff0c;dfs就行 #include <iostream> using namespace std;const int N 10; char g[N][N]; int n, k; int res; bool st[N];void dfs(int u, int cnt) // u枚举行 {if(cnt …...

Seaborn数据可视化(四)

目录 1.绘制箱线图 2.绘制小提琴图 3.绘制多面板图 4.绘制等高线图 5.绘制热力图 1.绘制箱线图 import seaborn as sns import matplotlib.pyplot as plt # 加载示例数据&#xff08;例如&#xff0c;使用seaborn自带的数据集&#xff09; tips sns.load_dataset("t…...

kubernetes deploy standalone mysql demo

kubernetes 集群内部署 单节点 mysql ansible all -m shell -a "mkdir -p /mnt/mysql/data"cat mysql-pv-pvc.yaml apiVersion: v1 kind: PersistentVolume metadata:name: mysql-pv-volumelabels:type: local spec:storageClassName: manualcapacity:storage: 5Gi…...

【Map】Map集合有序与无序测试案例:HashMap,TreeMap,LinkedHashMap(121)

简单介绍常用的三种Map&#xff1a;不足之处&#xff0c;欢迎指正&#xff01; HashMap&#xff1a;put数据是无序的&#xff1b; TreeMap&#xff1a;key值按一定的顺序排序&#xff1b;数字做key&#xff0c;put数据是有序&#xff0c;非数字字符串做key&#xff0c;put数据…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...

OpenGL-什么是软OpenGL/软渲染/软光栅?

‌软OpenGL&#xff08;Software OpenGL&#xff09;‌或者软渲染指完全通过CPU模拟实现的OpenGL渲染方式&#xff08;包括几何处理、光栅化、着色等&#xff09;&#xff0c;不依赖GPU硬件加速。这种模式通常性能较低&#xff0c;但兼容性极强&#xff0c;常用于不支持硬件加速…...

iOS 项目怎么构建稳定性保障机制?一次系统性防错经验分享(含 KeyMob 工具应用)

崩溃、内存飙升、后台任务未释放、页面卡顿、日志丢失——稳定性问题&#xff0c;不一定会立刻崩&#xff0c;但一旦积累&#xff0c;就是“上线后救不回来的代价”。 稳定性保障不是某个工具的功能&#xff0c;而是一套贯穿开发、测试、上线全流程的“观测分析防范”机制。 …...