当前位置: 首页 > news >正文

部署你自己的导航站-dashy

现在每天要访问的网页都太多了,尽管chrome非常好用,有强大的标签系统。但是总觉的少了点什么。
今天我就来分享一个开源的导航网站系统 dashy。这是一个国外的大佬的开源项目
github地址如下:https://github.com/Lissy93/dashy

来简单说一下为什么来分享这个项目

  • 支持多页面管理
  • 完全免费和开源
  • 安装简单,支持docker
  • 页面支持中文!

那么接下来我们采用docker的方式进行安装,一条命令即可。

  1. ssh连接到你的终端
  2. 输入命令 docker run -d -p 4000:80 lissy93/dashy 来拉去并且启动容器
  3. 前台访问 http://ip:4000 就可以看到前台页面已经启动了。
  4. 我们首先把语言改成中文
  5. 点击右上角编辑页面,然后新增section
  6. 我在这里新建了一个section。名字为搜索网站,你可以设置这个分区的图标(需要图片地址),以及排序方式,还有行和列等配置。
  7. 新建好分区之后,我们就可以新建item了。
  8. 我这里以百度举例子。创建好之后我们保存看看效果。 然后又添加了google 和bing。 他们的icon我随便添加的。所以看起来不美观。
    这里再说一下它的其他功能把。大家可以自行探索
  9. 主题和布局支持修改,而且主题支持编辑,主题很丰富
  10. 支持云端备份和同步
    11.支持搜索和 自定义样式

总体来看,这个导航站还是不错的,很多东西都支持自定义。感兴趣的可以自己去装一下。然后也是设置反向代理后绑定域名,就
可以拥有自己的导航站了。

相关文章:

部署你自己的导航站-dashy

现在每天要访问的网页都太多了,尽管chrome非常好用,有强大的标签系统。但是总觉的少了点什么。 今天我就来分享一个开源的导航网站系统 dashy。这是一个国外的大佬的开源项目 github地址如下:https://github.com/Lissy93/dashy 来简单说一下…...

运用谱分解定理反求实对称矩阵

文章目录 谱分解定理定理的运用 谱分解定理 设三阶实对称矩阵 A A A,若矩阵 A A A 的特征值为 λ 1 , λ 2 , λ 3 \lambda_1,\lambda_2,\lambda_3 λ1​,λ2​,λ3​,对应的单位化特征向量分别为 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α…...

Qt——Qt工作原理:事件驱动、信号与槽机制

Qt工作原理:事件驱动、信号与槽机制 Qt作为一个现代的GUI(图形用户界面)框架,采用了事件驱动的编程范式,并引入了信号与槽机制,以实现高度交互和松耦合的程序设计。下面详细解释了相关概念,以及…...

find ./* -type d -empty -exec touch {}/.gitkeep \;

这是一个 Linux 下的 find 命令,用于在所有空目录中创建 .gitkeep 文件。让我们来分解一下这个命令做了什么:- find ./* : 在当前目录及其子目录中查找。 -type d : 只查找目录类型的文件。 -empty : 只找出那些空的目…...

计算机行业前景展望

计算机行业的前景展望是非常广阔的。随着技术的快速发展和应用领域的不断拓展,计算机行业将继续扮演着重要的角色。以下是一些计算机行业前景的关键方面: 人工智能(AI)和机器学习(ML):AI和ML技术…...

TCP/UDP原理

文章目录 一、端口1. 端口的定义和作用2.服务端和客户端的区别3.常见的知名端口号有 二、TCP的原理1.TCP头部封装格式2.TCP可靠性机制三次握手确认机制四次挥手RST结束连接窗口机制 3.完整性校验4.TCP特征5.TCP的适用场景 三、UDP的原理1.UDP头部封装格式2.UDP特征3.UDP的适用场…...

操作符算数转换题

目录 1.交换两个变量(不创建临时变量) 2.统计二进制中1的个数 3.打印整数二进制的奇数位和偶数位 4.求两个数二进制中不同位的个数 5.【一维数组】有序序列合并 6.获得月份天数 7.变种水仙花数 8.选择题总结tips 这篇博文主要分享操作符&算…...

Centos7 安装 Docker

2年前写过一篇安装Docker的文档记录,当时安装有些麻烦,现在安装docker就非常容易了,而且安装完docker,自动也安装了docker compose,不用再去执行指令单独安装docker compose了,所以现在再记录一下&#xff…...

Java虚拟机内部组成

1、栈区 public class Math {public int compute(){//一个方法对应一块栈帧内存区域int a l;int b 2;int c (a b)*10;return c; } public static void main(String[] args){Math math new, Math() ;math.compute() ;System.out.println("test");}} 栈是先进后出…...

python遍历文件夹下的所有子文件夹,并将指定的文件复制到指定目录

python遍历文件夹下的所有子文件夹,并将指定的文件复制到指定目录 需求复制单个文件夹遍历所有子文件夹中的文件,并复制代码封装 需求 在1文件夹中有1,2两个文件夹 将这两个文件夹中的文件复制到 after_copy中 复制单个文件夹 # coding: ut…...

[golang 流媒体在线直播系统] 1.直播的简单介绍以及借助腾讯云直播实现在线直播

一.直播的简单介绍 1.介绍 直播,应该不陌生,有电视直播、网络主播、游戏直播、体育直播、在线教育直播等等,那么要实现在线直播的话就 必须要有 “ 流媒体在线直播服务器 ”. “流媒体在线直播服务器 ”不仅可以 实现游戏、赛事、电商、媒体、教育等行业的直播, 还可以实现 …...

C# 中操作集合的方法

Add&#xff1a;向集合中添加元素。 List<int> numbers new List<int>(){ 1, 2, 3 }; numbers.Add(4); // numbers 现在为 { 1, 2, 3, 4 }Remove&#xff1a;从集合中移除指定的元素。 List<int> numbers new List<int>(){ 1, 2, 3, 4 }; numbers.Re…...

pytorch学习(8)——现有网络模型的使用以及修改

1 vgg16模型 1.1 vgg16模型的下载 采用torchvision中的vgg16模型&#xff0c;能够实现1000个类型的图像分类&#xff0c;VGG模型在AlexNet的基础上使用3*3小卷积核&#xff0c;增加网络深度&#xff0c;具有很好的泛化能力。 首先下载vgg16模型&#xff0c;python代码如下&…...

get和post请求的区别

GET和POST是HTTP请求的两种方法,其区别如下 ① GET请求表示从指定的服务器中获取数据(请求数据),比如查询用户信息;POST请求表示将数据提交到指定的服务器进行处理(发送数据), ② GET请求是一个幂等的请求,一般用于对服务器资源不会产生影响的场景,比如说请求一个网友的…...

extern “C”关键字的作用

目录 概述C和C在函数调用和变量命名等方面的差异示例总结 概述 extern "C"是用于在C中声明使用C语言编写的函数和变量的关键字。C和C在函数调用和变量命名等方面存在一些差异&#xff0c;为了在C代码中正确地使用C语言的函数和变量&#xff0c;需要使用extern "…...

使用ffmpeg截取视频片段

本文将介绍2中使用ffmpeg截取视频的方法 指定截取视频的 开始时间 和 结束时间&#xff0c;进行视频截取指定截取视频的 开始时间 和 截取的秒数&#xff0c;进行视频截取 两种截取方式的命令行如下 截取某一时间段视频 优先使用 ffmpeg -i ./input.mp4 -c:v libx264 -crf…...

Python教程(11)——Python中的字典dict的用法介绍

dict的用法介绍 创建字典访问字典修改字典删除字典字典的相关函数 列表虽然好&#xff0c;但是如果需要快速的数据查找&#xff0c;就必须进行需要遍历&#xff0c;也就是最坏情况需要遍历完一遍才能找到需要的那个数据&#xff0c;时间复杂度是O(n)&#xff0c;显然这个速度是…...

三道dfs题

一&#xff1a;1114. 棋盘问题 - AcWing题库 分别枚举行和列&#xff0c;能填的地方就填&#xff0c;dfs就行 #include <iostream> using namespace std;const int N 10; char g[N][N]; int n, k; int res; bool st[N];void dfs(int u, int cnt) // u枚举行 {if(cnt …...

Seaborn数据可视化(四)

目录 1.绘制箱线图 2.绘制小提琴图 3.绘制多面板图 4.绘制等高线图 5.绘制热力图 1.绘制箱线图 import seaborn as sns import matplotlib.pyplot as plt # 加载示例数据&#xff08;例如&#xff0c;使用seaborn自带的数据集&#xff09; tips sns.load_dataset("t…...

kubernetes deploy standalone mysql demo

kubernetes 集群内部署 单节点 mysql ansible all -m shell -a "mkdir -p /mnt/mysql/data"cat mysql-pv-pvc.yaml apiVersion: v1 kind: PersistentVolume metadata:name: mysql-pv-volumelabels:type: local spec:storageClassName: manualcapacity:storage: 5Gi…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...