当前位置: 首页 > news >正文

基于KNN算法的鸢尾花种类预测

导入数据

iris_data = load_iris()
iris_data.data[0:5, :]
array([[5.1, 3.5, 1.4, 0.2],[4.9, 3. , 1.4, 0.2],[4.7, 3.2, 1.3, 0.2],[4.6, 3.1, 1.5, 0.2],[5. , 3.6, 1.4, 0.2]])
# 特征值名称
iris_data.feature_names
['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)']
# 分类标签
print(iris_data.target_names)
pd.DataFrame(iris_data.target).value_counts()
['setosa' 'versicolor' 'virginica']0    50
1    50
2    50
dtype: int64

简单统计分析

X = pd.DataFrame(iris_data.data, columns=iris_data.feature_names)
y = iris_data.target
X.describe()
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
count150.000000150.000000150.000000150.000000
mean5.8433333.0573333.7580001.199333
std0.8280660.4358661.7652980.762238
min4.3000002.0000001.0000000.100000
25%5.1000002.8000001.6000000.300000
50%5.8000003.0000004.3500001.300000
75%6.4000003.3000005.1000001.800000
max7.9000004.4000006.9000002.500000
plt.figure(figsize=(3,3))
sns.heatmap(X.corr(), annot=True)
<Axes: >

在这里插入图片描述

plt.figure(figsize=(4,4))
sns.pairplot(X)
<seaborn.axisgrid.PairGrid at 0x16b89fbf640><Figure size 400x400 with 0 Axes>

划分数据集

x_train, x_test , y_train,y_test = train_test_split(X, y, test_size=.2 , random_state=47)
x_train.shape, y_train.shape, x_test.shape, y_test.shape
((120, 4), (120,), (30, 4), (30,))

特征工程

归一化/标准化

transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
x_train.shape, x_test.shape
((120, 4), (30, 4))

模型训练

knn_model = KNeighborsClassifier(n_neighbors=5)
knn_model.fit(x_train, y_train)
KNeighborsClassifier()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
KNeighborsClassifier()

模型评估

y_pred = knn_model.predict(x_test)
y_pred == y_test
array([ True,  True,  True,  True,  True,  True,  True,  True,  True,True,  True,  True,  True,  True,  True,  True,  True,  True,True,  True,  True,  True,  True, False,  True,  True,  True,True,  True,  True])
knn_model.score(x_train, y_train)
0.9666666666666667
knn_model.score(x_test, y_test)
0.9666666666666667

相关文章:

基于KNN算法的鸢尾花种类预测

导入数据 iris_data load_iris() iris_data.data[0:5, :]array([[5.1, 3.5, 1.4, 0.2],[4.9, 3. , 1.4, 0.2],[4.7, 3.2, 1.3, 0.2],[4.6, 3.1, 1.5, 0.2],[5. , 3.6, 1.4, 0.2]])# 特征值名称 iris_data.feature_names[sepal length (cm),sepal width (cm),petal length (cm…...

英语-面试

自我介绍 hi,my name is tzh,26 years old.I major in software engineering. I participate in the design and development of the social project and e-commerce project. I master java and algorithm. Im familiar with gateway,spring,springboot,springcloud,redis…...

文件传输协议

文章目录 一、FTP1. 定义2. 端口3. 数据传输方式主动方式被动方式 二、TFTP三、常用命令 首先可以看下思维导图&#xff0c;以便更好的理解接下来的内容。 一、FTP 1. 定义 文件传输协议&#xff08;FTP&#xff09;是一种用于在客户端和服务器之间进行文件传输的标准网络协…...

Llama-2大模型本地部署研究与应用测试

最近在研究自然语言处理过程中&#xff0c;正好接触到大模型&#xff0c;特别是在年初chatgpt引来的一大波AIGC热潮以来&#xff0c;一直都想着如何利用大模型帮助企业的各项业务工作&#xff0c;比如智能检索、方案设计、智能推荐、智能客服、代码设计等等&#xff0c;总得感觉…...

白嫖idea

白嫖idea 地址 https://www.jetbrains.com/toolbox-app/...

PyCharm切换虚拟环境

PyCharm切换虚拟环境 为了满足不同任务需要不同版本的包&#xff0c;可以在Anaconda或者Miniconda创建多个虚拟环境文件夹&#xff0c;并在PyCharm下切换虚拟环境。 解决方案 1、打开Ananconda Prompt 2、创建自己的虚拟环境 格式&#xff1a;conda create -n 虚拟环境名字…...

自动化运维工具-----Ansible入门详解

目录 一.Ansible简介 什么是Ansible&#xff1f; Ansible的特点 Ansible的架构 二.Ansible任务执行解析 ansible任务执行模式 ansible执行流程 ansible命令执行过程 三.Ansible配置解析 ansible的安装方式 ansible的程序结构&#xff08;yum安装为例&#xff09; ansibl…...

一、Mycat2介绍与下载安装

第一章 入门概述 1.1 是什么 Mycat 是数据库中间件。 1、数据库中间件 中间件&#xff1a;是一类连接软件组件和应用的计算机软件&#xff0c;以便于软件各部件之间的沟 通。 例子&#xff1a;Tomcat&#xff0c;web中间件。 数据库中间件&#xff1a;连接java应用程序和数据库…...

链表的介绍

链表是一种常用的数据结构&#xff0c;它可以动态地添加、删除、查找和遍历元素。链表由多个节点组成&#xff0c;每个节点包括一个数据项和一个指向下一个节点的指针。这种数据结构可以高效地插入和删除元素&#xff0c;但相对于数组来说&#xff0c;查找元素的效率较低。 插…...

深度剖析:数据服务API的安全性与隐私保护

随着互联网技术的飞速发展&#xff0c;数据服务API已经成为了企业和个人获取、处理和分析数据的重要工具。然而&#xff0c;数据服务API的安全问题也日益凸显&#xff0c;尤其是在用户隐私保护方面。本文将深入剖析数据服务API的安全性与隐私保护问题&#xff0c;并结合产品FDL…...

MediaPlayer音频与视频的播放介绍

作者&#xff1a;向阳逐梦 Android多媒体中的——MediaPlayer&#xff0c;我们可以通过这个API来播放音频和视频该类是Androd多媒体框架中的一个重要组件&#xff0c;通过该类&#xff0c;我们可以以最小的步骤来获取&#xff0c;解码和播放音视频。 它支持三种不同的媒体来源…...

【Terraform学习】Terraform模块基础操作(Terraform模块)

本站以分享各种运维经验和运维所需要的技能为主 《python》&#xff1a;python零基础入门学习 《shell》&#xff1a;shell学习 《terraform》持续更新中&#xff1a;terraform_Aws学习零基础入门到最佳实战 《k8》暂未更新 《docker学习》暂未更新 《ceph学习》ceph日常问题解…...

改进的KMeans 点云聚类算法 根据体元中的点数量计算点密度,并获取前K个点密度最大的体元作为初始聚类中心(附 matlab 代码)

KMeans函数的主要逻辑如下: 使用InitCenter函数初始化聚类中心,该函数根据体元密度选择初始聚类中心。该函数的输入参数包括数据(data)、聚类中心数量(centerNum)和体元数量(voxelNum)。根据点云的取值范围计算包围盒的体积(V)和体元边长(d)。根据体元边长将点云数…...

php user.ini详解

0x00 前言 本篇主要是讲解分析一下user.ini相关的内容。因为这个知识点涉及到文件上传的绕过 0x01 正文 .user.ini 文件是PHP的配置文件&#xff0c;用于自定义PHP的配置选项。该文件通常位于PHP安装目录的根目录下&#xff0c;或者在特定的网站目录下。 .user.ini 文件是一…...

用 PHP 和 JavaScript 显示地球卫星照片

向日葵 8 号气象卫星是日本宇宙航空研究开发机构设计制造的向日葵系列卫星之一&#xff0c;重约 3500 公斤&#xff0c;设计寿命 15 年以上。该卫星于 2014 年 10 月 7 日由 H2A 火箭搭载发射成功&#xff0c;主要用于监测暴雨云团、台风动向以及持续喷发活动的火山等防灾领域。…...

Ubantu安装mongodb,开启远程访问和认证

最近因为项目原因需要在阿里云服务器上部署MongoDB&#xff0c;操作系统为Ubuntu&#xff0c;网上查阅了一些资料&#xff0c;特此记录一下步骤。 1.运行apt-get install mongodb命令安装MongoDB服务&#xff08;如果提示找不到该package&#xff0c;说明apt-get的资源库版本比…...

高手速成|数据库脚本生成工具

高手速成|数据库脚本生成工具 文章目录 高手速成|数据库脚本生成工具前言1、软件的安装及使用2、建立新工程3、创建Conceptual Data Model&#xff08;概念数据模型&#xff09;4、将E-R图转化为其他数据库模型5、导出DBMS代码&#xff08;Sql执行脚本&#xff09;6、执行sql脚…...

振动国标2009GB/T 19873.2-2009/ISO 13373-2:2005笔记

国标原文 1.时域&#xff0c;要求&#xff0c;采样率大于最高频率10倍&#xff08;最低频率&#xff1f;&#xff09; 2.频域&#xff0c;要求采样率大于最高频率2倍。 3.3.2 积分和微分&#xff0c;二次积分。 3.3.3 均方根。 3.4 滤波 4.1 奈奎斯特图、极坐标图、坎贝尔…...

SpringBoot中自定义starter

SpringBoot自动装配原理&#xff1a; EnableAutoConfiguration注解开启自动装配功能&#xff0c;该注解通常放在应用的主类上。spring.factories文件位于META-INF目录下的配置文件中定义各个自动装配类的全限定名 当SpringBoot启动时&#xff0c;会加载classpath下所有的spri…...

git-tf clone 路径有空格处理方案

git-tf clone 路径存在空格情况下&#xff0c;运行命令报错&#xff1b; 需要对路径进行双引号处理...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

算术操作符与类型转换:从基础到精通

目录 前言&#xff1a;从基础到实践——探索运算符与类型转换的奥秘 算术操作符超级详解 算术操作符&#xff1a;、-、*、/、% 赋值操作符&#xff1a;和复合赋值 单⽬操作符&#xff1a;、--、、- 前言&#xff1a;从基础到实践——探索运算符与类型转换的奥秘 在先前的文…...

Matlab实现任意伪彩色图像可视化显示

Matlab实现任意伪彩色图像可视化显示 1、灰度原始图像2、RGB彩色原始图像 在科研研究中&#xff0c;如何展示好看的实验结果图像非常重要&#xff01;&#xff01;&#xff01; 1、灰度原始图像 灰度图像每个像素点只有一个数值&#xff0c;代表该点的​​亮度&#xff08;或…...

React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构

React 实战项目&#xff1a;微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇&#xff01;在前 29 篇文章中&#xff0c;我们从 React 的基础概念逐步深入到高级技巧&#xff0c;涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...