当前位置: 首页 > news >正文

Llama-2大模型本地部署研究与应用测试

        最近在研究自然语言处理过程中,正好接触到大模型,特别是在年初chatgpt引来的一大波AIGC热潮以来,一直都想着如何利用大模型帮助企业的各项业务工作,比如智能检索、方案设计、智能推荐、智能客服、代码设计等等,总得感觉相比传统的搜索和智能化辅助手段,大模型提供的方式更高效、直接和精准等,而且结合chat,能够实现多轮次的迭代,更接近或了解用户需求,提供更精准的答复。目前正在开展大模型部署应用测试,目前开源大模型主要就是Llama、ChatGLM大模型等,包括Llama-1和Llama-2,在其基础上的改进大模型有Chinese-LLaMA、OpenChineseLLaMA、Moss、baichuan等等,本文主要对原始Llama大模型进行了本地部署与测试,后续再逐步扩展,结合行业数据资源进行finetune,希望在开源模型的基础上对油气行业大模型构建有所帮助,Llama-2大模型部署及应用测试如下。

一、部署环境

环境:利用anaconda管理python环境
conda:conda 4.3.30
python:Python 3.10.4
cuda version:11.0,安装低于该版本的包即可,我安装的是cu102,GPU采用Tesla V100,详见GPU监测情况
env:/root/anaconda3/envs/torch/
require包如下,主要看torch、torchaudio、torchvision、transformers、uvicorn、fastapi、accelerate。

二、目前已部署的大模型和运行比较

Chinese-Llama-2-7b,运行速度慢,加载速度快
Chinese-Llama-2-7b-4bit,运行速度相对快,加载速度最快
chinese-alpaca-2-7b-hf,运行速度更快,加载速度慢
chinese-alpaca-2-13b-hf,运行速度更快,加载速度慢
open-chinese-llama-7b-patch,运行速度中等,加载速度慢

三、目前支持的运行方式:

1.控制台运行,详见chinese-llama2Test2.py,运行命令:python chinese-llama2Test2.py Chinese-Llama-2-7b
2.Rest服务运行,restful运行,详见restApi.py,运行命令:python restApi.py Chinese-Llama-2-7b
对于Rest服务的调用,主要用postman或DHC客户端模拟POST请求,Content-Type=application/json,post参数是json格式,如 {"prompt": "北京最佳的旅游时间", "history": []}

四、应用测试

1.单次测试代码

# 一次性访问
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
model_path = "model/Chinese-Llama-2-7b"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_path).half().cuda()
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)instruction = """[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n{} [/INST]"""prompt = instruction.format("用中文回答,When is the best time to visit Beijing, and do you have any suggestions for me?")
generate_ids = model.generate(tokenizer(prompt, return_tensors='pt').input_ids.cuda(), max_new_tokens=4096, streamer=streamer)

2.输出结果

 3.循环交互模式测试代码

#循环交互模式
import torch
import sys, getopt
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
if (__name__ == '__main__') or (__name__ == 'main'):# 检查参数个数argc = len(sys.argv)if (argc <= 1):print('missingParms' % locals())sys.exit()#处理命令行参数modelName = sys.argv[1]#model_path = "model/Chinese-Llama-2-7b"model_path = "model/"+modelNametokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)if model_path.endswith("4bit"): #支持q4的轻量化模型,选择对应模型即可。model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.float16,device_map='auto')else:model = AutoModelForCausalLM.from_pretrained(model_path).half().cuda()streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)instruction = """[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n{} [/INST]"""while True:text = input("请输入提问 prompt\n")if text == "q":breakprompt = instruction.format(text)generate_ids = model.generate(tokenizer(prompt, return_tensors='pt').input_ids.cuda(), max_new_tokens=4096, streamer=streamer)

4.输出结果

五、监测GPU的使用情况

命令:watch -n 1 -d nvidia-smi

 1.启动时的GPU状态

 2.运行过程中的GPU状态

相关文章:

Llama-2大模型本地部署研究与应用测试

最近在研究自然语言处理过程中&#xff0c;正好接触到大模型&#xff0c;特别是在年初chatgpt引来的一大波AIGC热潮以来&#xff0c;一直都想着如何利用大模型帮助企业的各项业务工作&#xff0c;比如智能检索、方案设计、智能推荐、智能客服、代码设计等等&#xff0c;总得感觉…...

白嫖idea

白嫖idea 地址 https://www.jetbrains.com/toolbox-app/...

PyCharm切换虚拟环境

PyCharm切换虚拟环境 为了满足不同任务需要不同版本的包&#xff0c;可以在Anaconda或者Miniconda创建多个虚拟环境文件夹&#xff0c;并在PyCharm下切换虚拟环境。 解决方案 1、打开Ananconda Prompt 2、创建自己的虚拟环境 格式&#xff1a;conda create -n 虚拟环境名字…...

自动化运维工具-----Ansible入门详解

目录 一.Ansible简介 什么是Ansible&#xff1f; Ansible的特点 Ansible的架构 二.Ansible任务执行解析 ansible任务执行模式 ansible执行流程 ansible命令执行过程 三.Ansible配置解析 ansible的安装方式 ansible的程序结构&#xff08;yum安装为例&#xff09; ansibl…...

一、Mycat2介绍与下载安装

第一章 入门概述 1.1 是什么 Mycat 是数据库中间件。 1、数据库中间件 中间件&#xff1a;是一类连接软件组件和应用的计算机软件&#xff0c;以便于软件各部件之间的沟 通。 例子&#xff1a;Tomcat&#xff0c;web中间件。 数据库中间件&#xff1a;连接java应用程序和数据库…...

链表的介绍

链表是一种常用的数据结构&#xff0c;它可以动态地添加、删除、查找和遍历元素。链表由多个节点组成&#xff0c;每个节点包括一个数据项和一个指向下一个节点的指针。这种数据结构可以高效地插入和删除元素&#xff0c;但相对于数组来说&#xff0c;查找元素的效率较低。 插…...

深度剖析:数据服务API的安全性与隐私保护

随着互联网技术的飞速发展&#xff0c;数据服务API已经成为了企业和个人获取、处理和分析数据的重要工具。然而&#xff0c;数据服务API的安全问题也日益凸显&#xff0c;尤其是在用户隐私保护方面。本文将深入剖析数据服务API的安全性与隐私保护问题&#xff0c;并结合产品FDL…...

MediaPlayer音频与视频的播放介绍

作者&#xff1a;向阳逐梦 Android多媒体中的——MediaPlayer&#xff0c;我们可以通过这个API来播放音频和视频该类是Androd多媒体框架中的一个重要组件&#xff0c;通过该类&#xff0c;我们可以以最小的步骤来获取&#xff0c;解码和播放音视频。 它支持三种不同的媒体来源…...

【Terraform学习】Terraform模块基础操作(Terraform模块)

本站以分享各种运维经验和运维所需要的技能为主 《python》&#xff1a;python零基础入门学习 《shell》&#xff1a;shell学习 《terraform》持续更新中&#xff1a;terraform_Aws学习零基础入门到最佳实战 《k8》暂未更新 《docker学习》暂未更新 《ceph学习》ceph日常问题解…...

改进的KMeans 点云聚类算法 根据体元中的点数量计算点密度,并获取前K个点密度最大的体元作为初始聚类中心(附 matlab 代码)

KMeans函数的主要逻辑如下: 使用InitCenter函数初始化聚类中心,该函数根据体元密度选择初始聚类中心。该函数的输入参数包括数据(data)、聚类中心数量(centerNum)和体元数量(voxelNum)。根据点云的取值范围计算包围盒的体积(V)和体元边长(d)。根据体元边长将点云数…...

php user.ini详解

0x00 前言 本篇主要是讲解分析一下user.ini相关的内容。因为这个知识点涉及到文件上传的绕过 0x01 正文 .user.ini 文件是PHP的配置文件&#xff0c;用于自定义PHP的配置选项。该文件通常位于PHP安装目录的根目录下&#xff0c;或者在特定的网站目录下。 .user.ini 文件是一…...

用 PHP 和 JavaScript 显示地球卫星照片

向日葵 8 号气象卫星是日本宇宙航空研究开发机构设计制造的向日葵系列卫星之一&#xff0c;重约 3500 公斤&#xff0c;设计寿命 15 年以上。该卫星于 2014 年 10 月 7 日由 H2A 火箭搭载发射成功&#xff0c;主要用于监测暴雨云团、台风动向以及持续喷发活动的火山等防灾领域。…...

Ubantu安装mongodb,开启远程访问和认证

最近因为项目原因需要在阿里云服务器上部署MongoDB&#xff0c;操作系统为Ubuntu&#xff0c;网上查阅了一些资料&#xff0c;特此记录一下步骤。 1.运行apt-get install mongodb命令安装MongoDB服务&#xff08;如果提示找不到该package&#xff0c;说明apt-get的资源库版本比…...

高手速成|数据库脚本生成工具

高手速成|数据库脚本生成工具 文章目录 高手速成|数据库脚本生成工具前言1、软件的安装及使用2、建立新工程3、创建Conceptual Data Model&#xff08;概念数据模型&#xff09;4、将E-R图转化为其他数据库模型5、导出DBMS代码&#xff08;Sql执行脚本&#xff09;6、执行sql脚…...

振动国标2009GB/T 19873.2-2009/ISO 13373-2:2005笔记

国标原文 1.时域&#xff0c;要求&#xff0c;采样率大于最高频率10倍&#xff08;最低频率&#xff1f;&#xff09; 2.频域&#xff0c;要求采样率大于最高频率2倍。 3.3.2 积分和微分&#xff0c;二次积分。 3.3.3 均方根。 3.4 滤波 4.1 奈奎斯特图、极坐标图、坎贝尔…...

SpringBoot中自定义starter

SpringBoot自动装配原理&#xff1a; EnableAutoConfiguration注解开启自动装配功能&#xff0c;该注解通常放在应用的主类上。spring.factories文件位于META-INF目录下的配置文件中定义各个自动装配类的全限定名 当SpringBoot启动时&#xff0c;会加载classpath下所有的spri…...

git-tf clone 路径有空格处理方案

git-tf clone 路径存在空格情况下&#xff0c;运行命令报错&#xff1b; 需要对路径进行双引号处理...

IP 地址与域名是一对多的关系。一个 IP 地址可以对应多个域名,但一个域名只对应一个 IP地址。这句话如何理解?

假设你有一个大型公司&#xff0c;拥有许多服务器和网站。每台服务器都有自己的IP地址&#xff0c;就像每台手机有一个电话号码一样。然而&#xff0c;你可能不想让客户记住一堆复杂的数字来访问你的网站。这时候&#xff0c;你可以为每个网站分配一个易记的域名&#xff0c;比…...

DNS解析分类

DNS&#xff08;域名系统&#xff09;解析是将域名转换为对应的IP地址的过程。根据不同的功能和角色&#xff0c;DNS解析可以分为以下几种分类&#xff1a; 递归解析&#xff08;Recursive Resolution&#xff09;&#xff1a;递归解析是指DNS客户端向本地DNS服务器&#xff08…...

部署你自己的导航站-dashy

现在每天要访问的网页都太多了&#xff0c;尽管chrome非常好用&#xff0c;有强大的标签系统。但是总觉的少了点什么。 今天我就来分享一个开源的导航网站系统 dashy。这是一个国外的大佬的开源项目 github地址如下&#xff1a;https://github.com/Lissy93/dashy 来简单说一下…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

Qt的学习(一)

1.什么是Qt Qt特指用来进行桌面应用开发&#xff08;电脑上写的程序&#xff09;涉及到的一套技术Qt无法开发网页前端&#xff0c;也不能开发移动应用。 客户端开发的重要任务&#xff1a;编写和用户交互的界面。一般来说和用户交互的界面&#xff0c;有两种典型风格&…...

负载均衡器》》LVS、Nginx、HAproxy 区别

虚拟主机 先4&#xff0c;后7...

如何通过git命令查看项目连接的仓库地址?

要通过 Git 命令查看项目连接的仓库地址&#xff0c;您可以使用以下几种方法&#xff1a; 1. 查看所有远程仓库地址 使用 git remote -v 命令&#xff0c;它会显示项目中配置的所有远程仓库及其对应的 URL&#xff1a; git remote -v输出示例&#xff1a; origin https://…...

边缘计算网关提升水产养殖尾水处理的远程运维效率

一、项目背景 随着水产养殖行业的快速发展&#xff0c;养殖尾水的处理成为了一个亟待解决的环保问题。传统的尾水处理方式不仅效率低下&#xff0c;而且难以实现精准监控和管理。为了提升尾水处理的效果和效率&#xff0c;同时降低人力成本&#xff0c;某大型水产养殖企业决定…...

python数据结构和算法(1)

数据结构和算法简介 数据结构&#xff1a;存储和组织数据的方式&#xff0c;决定了数据的存储方式和访问方式。 算法&#xff1a;解决问题的思维、步骤和方法。 程序 数据结构 算法 算法 算法的独立性 算法是独立存在的一种解决问题的方法和思想&#xff0c;对于算法而言&a…...