当前位置: 首页 > news >正文

06- OpenCV查找图像轮廓 (OpenCV基础) (机器视觉)

知识重点

  • 灰度图转换:  gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  • 二值化: 返回两个东西,一个阈值, 一个是二值化的图:  thresh, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
  • 查找轮廓: 返回两个结果,分别是轮廓和层级:  contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE )
  • 描绘轮廓: cv2.drawContours(img_copy, contours, -1, (0, 0, 255), 2) 索引取-1时描绘所有轮廓.
  • 轮廓面积计算:  area = cv2.contourArea(contours[1])    # print('area: ', area)
  • 轮廓周长计算:  perimeter = cv2.arcLength(contours[1], closed = False)   # perimeter 周长
  • 多边形逼近:  approx = cv2.approxPolyDP(contours[0], 6, closed = True)
  • 凸包计算:  hull = cv2.convexHull(contours[0])  凸包指的是完全包含原有轮廓,并且仅由轮廓上的点所构成的多边形
  • 最小外接矩形:  rect = cv2.minAreaRect(contours[1])  
    • box = cv2.boxPoints(rect) 
    • box = np.round(box).astype('int64')   # 注意坐标必须是整数的, 所以需要转化一下
    • cv2.drawContours(img, [box], 0, (255, 0, 0), 2)
  • 最大外接矩形:  x, y, w, h = cv2.boundingRect(contours[1])  # 最大外接矩形参数, (x,y), (w, h)

    • cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)

  • 外接圆:  (a, b), radius = cv2.minEnclosingCircle(contours[1])  # , 返回圆的中心点和半径

    • cv2.circle(img, (int(a), int(b)), int(radius), (0, 255, 0), 2)


7. 图像轮廓

7.1 什么是图像轮廓

图像轮廓是具有相同颜色或灰度的连续点的曲线. 轮廓在形状分析和物体的检测和识别中很有用。

轮廓的作用:

  • 用于图形分析

  • 物体的识别和检测

注意点:

  • 为了检测的准确性,需要先对图像进行二值化Canny操作

  • 画轮廓时会修改输入的图像, 如果之后想继续使用原始图像,应该将原始图像储存到其他变量中。

7.2 查找轮廓

  • findContours(image, mode, method[, contours[, hierarchy[, offset]]])

    • mode 查找轮廓的模式

      • RETR_EXTERNAL = 0, 表示只检测外围轮廓

      • RETR_LIST = 1, 检测的轮廓不建立等级关系, 即检测所有轮廓, 较为常用

      • RETR_CCOMP = 2, 每层最多两级, 从小到大, 从里到外.

      • RETR_TREE = 3, 按照树型存储轮廓, 从大到小, 从右到左.

import cv2
import numpy as np# 显示黑白,实际为彩图
img = cv2.imread('./contours1.jpeg')
# 先变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化,返回两个东西,一个阈值, 一个是二值化的图
thresh, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)# 查找轮廓,新版本返回两个结果,分别是轮廓和层级
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# 画轮廓是会直接修改原图,如果保证原图不变,建议先拷贝
img_copy = img.copy()
cv2.drawContours(img_copy, contours, -1, (0, 0, 255), 2)  # 索引轮廓cv2.imshow('img', img)
cv2.imshow('img_copy', img_copy)
cv2.waitKey(0)
cv2.destroyAllWindows()

  • method 轮廓近似方法也叫 ApproximationMode
    • CHAIN_APPROX_NONE 保存所有轮廓上的点

    • CHAIN_APPROX_SIMPLE, 只保存角点, 比如四边形, 只保留四边形的4个角, 存储信息少, 比较常用

  • 返回 contours和hierachy 即轮廓和层级

7.3 绘制轮廓

  • drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]])

    • image 要绘制的轮廓图像

    • contours轮廓点

    • contourIdx 要绘制的轮廓的编号. -1 表示绘制所有轮廓

    • color 轮廓的颜色, 如 (0, 0, 255)表示红色

    • thickness 线宽, -1 表示全部填充

import cv2
import numpy as np# 显示黑白,实际为彩图
img = cv2.imread('./contours1.jpeg')
# 先变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 二值化,返回两个东西,一个阈值, 一个是二值化的图
thresh, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)# 查找轮廓,新版本返回两个结果,分别是轮廓和层级
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)# 画轮廓是会直接修改原图,如果保证原图不变,建议先拷贝
img_copy = img.copy()
cv2.drawContours(img_copy, contours, 1, (0, 0, 255), 2)  # 看1#的轮廓cv2.imshow('img', img)
cv2.imshow('img_copy', img_copy)
cv2.waitKey(0)
cv2.destroyAllWindows()

7.4 轮廓的面积和周长

轮廓面积是指每个轮廓中所有的像素点围成区域的面积,单位为像素。

轮廓面积是轮廓重要的统计特性之一,通过轮廓面积的大小可以进一步分析每个轮廓隐含的信息,例如通过轮廓面积区分物体大小识别不同的物体。在查找到轮廓后, 可能会有很多细小的轮廓, 我们可以通过轮廓的面积进行过滤.

  • contourArea(contour)

  • arcLength(curve, closed)

    • curve即轮廓

    • closed是否是闭合的轮廓

import cv2
import numpy as np# 显示黑白,实际为彩图
img = cv2.imread('./contours1.jpeg')# 先变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化,返回两个东西,一个阈值, 一个是二值化的图
thresh, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
# 查找轮廓,新版本返回两个结果,分别是轮廓和层级
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)# 画轮廓是会直接修改原图,如果保证原图不变,建议先拷贝
img_copy = img.copy()
cv2.drawContours(img_copy, contours, 1, (0, 0, 255), 2)  # 索引轮廓# 计算轮廓面积
area = cv2.contourArea(contours[1])
print('area: ', area)     # area:  74798.0
# 计算轮廓周长
perimeter = cv2.arcLength(contours[1], closed = False)
print('perimeter: ',perimeter)     # perimeter:  821.656cv2.imshow('img', img)
cv2.imshow('img_copy', img_copy)
cv2.waitKey(0)
cv2.destroyAllWindows()

7.5 多边形逼近与凸包

findContours后的轮廓信息contours可能过于复杂不平滑,可以用approxPolyDP函数对该多边形曲线做适当近似,这就是轮廓的多边形逼近.apporxPolyDP就是以多边形去逼近轮廓,采用的是Douglas-Peucker算法(方法名中的DP),DP算法原理比较简单,核心就是不断找多边形最远的点加入形成新的多边形,直到最短距离小于指定的精度。

  • approxPolyDP(curve, epsilon, closed[, approxCurve])

    • curve 要近似逼近的轮廓

    • epsilon 即DP算法使用的阈值

    • closed 轮廓是否闭合

import cv2
import numpy as np# 显示黑白,实际为彩图
img = cv2.imread('./hand.png')
# print(img.shape)
# 先变成单通道的黑白图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 二值化,返回两个东西,一个阈值, 一个是二值化的图
thresh, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
# 查找轮廓,新版本返回两个结果,分别是轮廓和层级
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)# 画轮廓是会直接修改原图,如果保证原图不变,建议先拷贝
img_copy = img.copy()
cv2.drawContours(img_copy, contours, 0, (0, 0, 255), 2)  # 索引轮廓# 使用多边形逼近,近似模拟多边形的轮廓
approx = cv2.approxPolyDP(contours[0], 6, closed = True)
# approx 本质是一个类型的轮廓
# 画出多边形逼近的轮廓
cv2.drawContours(img_copy, [approx], 0, (0, 255, 0), 2) cv2.imshow('img_copy', img_copy)
cv2.waitKey(0)
cv2.destroyAllWindows()

逼近多边形是轮廓的高度近似,但是有时候,我们希望使用一个多边形的凸包来简化它。凸包跟逼近多边形很像,只不过它是物体最外层的凸多边形。凸包指的是完全包含原有轮廓,并且仅由轮廓上的点所构成的多边形。凸包的每一处都是凸的,即在凸包内连接任意两点的直线都在凸包的内部。在凸包内,任意连续三个点的内角小于180°。

  • convexHull(points[, hull[, clockwise[, returnPoints]]])

    • points 即轮廓

    • colckwise 顺时针绘制

import cv2
import numpy as npimg = cv2.imread('./hand.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化
therth, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
# 查找轮廓
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# 绘制轮廓
cv2.drawContours(img, contours, 0, (0, 0, 255), 2)# 计算凸包
hull = cv2.convexHull(contours[0])
# 画出凸包
cv2.drawContours(img, [hull], 0, (255, 0, 0), 2)cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

7.6 外接矩形及外接圆

外接矩形分为最小外接矩形和最大外接矩形.

下图中红色矩形是最小外接矩形, 绿色矩形为最大外接矩形.

  • minAreaRect(points) 最小外接矩阵

    • points 即为轮廓

    • 返回元组, 内容是一个旋转矩形(RotatedRect)的参数: 矩形的起始坐标x,y, 矩形的宽度和高度, 矩形的选择角度.

  • boundingRect(points) 最大外接矩阵

    • points 即为轮廓a

  • cv2.minEnclosingCircle(points) 最小外接圆

import cv2
import numpy as npimg =cv2.imread('./hello.jpeg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 二值化
thersh, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)# rect是一个Rotated Rect 旋转的矩形, 矩形的起始坐标(x,y), 矩形的长宽, 矩形旋转角度
rect = cv2.minAreaRect(contours[1])
# 其实就是帮我们把旋转矩阵的4个坐标点计算出来了.
# 注意坐标必须是整数的, 所以需要转化一下
box = cv2.boxPoints(rect)
# 四舍五入
box = np.round(box).astype('int64')
# 绘制最小外接矩形
cv2.drawContours(img, [box], 0, (255, 0, 0), 2)# 最大外接矩形, 返回最大外接矩形的参数, (x,y), (w, h)
x, y, w, h = cv2.boundingRect(contours[1])
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)# 外接圆, 返回圆的中心点和半径
(a, b), radius = cv2.minEnclosingCircle(contours[1])
# 画出圆
cv2.circle(img, (int(a), int(b)), int(radius), (0, 255, 0), 2)cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

相关文章:

06- OpenCV查找图像轮廓 (OpenCV基础) (机器视觉)

知识重点 灰度图转换: gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)二值化: 返回两个东西,一个阈值, 一个是二值化的图: thresh, binary cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)查找轮廓: 返回两个结果,分别是轮廓和层级: c…...

OpenGL学习日记之模型绘制

自己编译运行过程中遇到的一些问题 下载Assimp已编译的lib(因为我们公司的电脑有很多权限和限制,也不能自己安装一些没有报备的软件,所以愁方便我就没有用cMake自己编译了)找到一位免费分享的博主的。 https://blog.csdn.net/lady_killer9/article/deta…...

Springboot接口多个DTO入参的Postman上传方式

在Java中使用Spring Boot框架时,可以同时使用多个DTO作为方法参数。 TO(Data Transfer Object)是一个常见的设计模式,用于封装数据传输对象。它通常用于将数据从一个层传递到另一个层,例如将数据从服务层传递到控制器…...

软考各科目考核内容详细介绍,看这里

新手在准备报考软考时,都会遇到这样的一个问题——科目这么多,我适合考什么?要想知道自己适合报什么科目,就需要了解每个科目是什么,考什么等一系列的问题。 接下来,就为大家介绍一下软考的各个科目&#…...

连续时间信号与离散时间信号

前言 《信号与系统》是一门很难的课,也是许多学校考研要考的专业课,由于每周只有两节课,所以每次上完都要及时的去复习,这里参考的教材是奥本海姆著作,刘海棠译,北京:电子工业出版社&#xff0…...

TPM密钥管理、使用

前面讲过证书相关内容,除了在软件方面有所应用外,在硬件方面也有很多应用。本次讲一下TPM相关的内容。 一、TPM介绍 1.1背景 TCG基于硬件安全的架构是为应对1990s后期日益增多的复杂恶意软件攻击应用而生的。当时以及现在,抵御PC客户端网络…...

return和finally执行顺序、运行时异常与一般异常异同、error和exception区别、Java异常处理机制原理与应用

文章目录1.try {}里有一个return语句,那么紧跟在这个try后的finally{}里的code会不会被执行,什么时候被执行,在return前还是后?2.运行时异常与一般异常有何异同?3.java 程序中的错误有三种类型分别是什么4.error和exception有什么…...

我为什么放弃WinUI3

基于WinUI3开发HiNote已经有一个多月的时间了,算是做出来一个简单能用的C端软件。 基于个人的经历,说说其中的开发体验。 UI设计语言 无论是否抄袭苹果,WinUI3给人的感觉都是眼前一亮的。简洁美观,现代化,毛玻璃的美…...

2023年全国最新安全员精选真题及答案2

百分百题库提供安全员考试试题、建筑安全员考试预测题、建筑安全员ABC考试真题、安全员证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。 21.(单选题)静作用压路机在施工过程,要求实际含水量…...

计算机408考研先导课---C语言难点

以下为小编在重温C语言时,容易犯错的一些点,希望列出来对大家有一定帮助! 一、整型变量数的范围 类型说明符长度(字节)数的范围int4/2(有些为4字节,有些为2字节)-32768~32767short2…...

K8S 部署 Redis-Cluster 集群

本文使用 bitnami 镜像部署 redis-cluster 官方文档:https://github.com/bitnami/charts/tree/main/bitnami/redis-cluster 添加 bitnami 仓库 helm repo add bitnami https://charts.bitnami.com/bitnami自定义 values.yaml storageClass:集群的存储…...

[oeasy]python0089_大型机的衰落_Dec小型机崛起_PDP_VAX网络

编码进化 回忆上次内容 上次 回顾了 计算机存储单位的演变 最小的读写单位 是 bit 8-bit 固定下来 成为了字节(Byte) 位数容量8-bit1Byte1024Byte1 KB1024 KB1 MB1024 MB1 GB1024 GB1 TB 存储字符时 第1位 是 标志位后7位 是 ascii具体的值 可以用 1Byte 存储 计算机之间 …...

Apache Shiro与Spring Security对比

Apache Shiro VS Spring Security 1.Spring Security 官方文档:https://spring.io/projects/spring-security#overview介绍: Spring Security是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架。它提供了一组可以在Spr…...

23春招-mysql事务相关高频面试题

1、什么是事务 对于一个事务,要么事务内的sql全部执行,要么都不执行 2、 事务的特性ACID 原子性 整个事务中所有的操作要么全部提交成功,要么全部失败会滚。 一致性 数据库总是从一个一致性状态转换到另一个一致性状态。假如有三个sql语句…...

天线理论知识1——基础概念介绍

基础概念介绍 文章目录 基础概念介绍前言一、主要参数二、天线的种类三、天线的测量前言 天线是用于发射和接收电磁波设备。其功能可以概括为转换自由空间中的电磁波和设备中的导行波。 一、主要参数 天线设计中要考虑的参数较多,包括 方向性函数:距离天线 r r r处的远区…...

【云原生之Docker实战】使用Docker部署StackEdit在线Markdown编辑器

【云原生之Docker实战】使用Docker部署StackEdit在线Markdown编辑器 一、StackEdit介绍1.StackEdit简介2.StackEdit中文版简介3.StackEdit中文版功能二、检查本地Docker环境1.检查系统版本2.检查系统Docker版本3.检查docker compose版本三、下载StackEdit镜像四、部署StackEdit…...

特征工程:特征构造以及时间序列特征构造

数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。由此可见,特征工程在机器学习中占有相当重要的地位。在实际应用当中,可以说特征工程是机器学习成功的关键。 那特征工程是什么? 特征工程是利用数据领域的相关…...

单master部署简要步骤

准备多台服务器,选定一台为master例如设置ip为192.168.0.10,host: k8s.master,其他分别为 k8s.s11 192.168.0.11k8s.s12 192.168.0.12....hostname可以使用命令配置hostname k8s.masterip解析可以在hosts文件中写入,如果有内部dns解析可以在内…...

【算法基础】(一)基础算法 --- 前缀和与差分

✨个人主页:bit me ✨当前专栏:算法基础 🔥专栏简介:该专栏主要更新一些基础算法题,有参加蓝桥杯等算法题竞赛或者正在刷题的铁汁们可以关注一下,互相监督打卡学习 🌹 🌹 &#x1f3…...

c++提高篇——stack容器

一、stack容器的基本概念 stack是一种先进后出(FILO)的数据结构,它只有一个出口。栈中只有顶端的元素才可以被外界使用。因此该容器不能有遍历行为。基本的结构如下: stack容器有些像手枪子弹的弹夹,其数据的出入栈可以以弹夹为参考。 二、…...

XCTF-web-easyupload

试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes&#xff0…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

微信小程序云开发平台MySQL的连接方式

注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...