当前位置: 首页 > news >正文

C++性能白皮书

最近看完了《C++性能白皮书》,这本书列出了一些性能优化的思路,不过只是一些指引,没有讲具体细节,我整理出了其中的关键点分享给大家:

硬件篇

作为一个程序员,想要性能优化,最好要了解些硬件,特别是CPU架构的一些知识点:

  • 流水线

  • 分支预测

  • 寄存器重命名

  • 数据预取

  • 指令重排和乱序执行

  • 同时多线程(超线程)

  • 数据并行 SIMD 单指令多数据

还要了解CPU的特点:

  • 一个处理器上,多条指令可能同时执行

  • 一个处理器上,代码的执行结果会和程序员可观察到的顺序一致,但其他处理器观察到的执行结果可能不是一个顺序

  • 顺序、无跳转的代码性能最高

  • 相邻且对齐的数据访问性能最高

内存方向的优化:

 

要了解基本工具:

  • 编译器:MSVC GCC clang

  • 不同级别的优化:O1 O2 O3 以及他们的主要区别

需要知道性能分析指导下的优化:PGO profile-guided optimization

也就是利用程序运行的profiling数据,指导编译器进一步优化。多测试,找到程序热点,根据数据针对性优化。

还有链接期优化:link-time optimization LTO

LTO可以:

  • 跨翻译单元的函数内联

  • 跨翻译单元的程序整体优化

  • 死代码消除

做性能优化,需要了解性能测试的阿姆达尔定律,80-20原则,20%的代码决定了80%的结果,如果对20%以外的代码进行优化,性价比太低,性能测试的意义就在于此:

  • 找出代码中性能开销最大的部分

  • 测量代码优化之后的实际收益

需要熟练使用性能采样工具:

  • Windows中Visual Studio有自带的性能分析工具

  • Linux有Perf或者gperftools

C++篇

关于C++语言层面的优化,可以在下面这些方向做优化:

  1. 优先栈内存,次之堆内存

  2. 巧妙使用RAII管理资源

  3. 移动语义虽然不好理解,但也可以巧妙使用移动语义减少对象的非必要拷贝

  4. 模板和泛型技巧华而不实,给开发标准库的人使用还好,而且调试难度也较高,我们普通业务开发者只需要做到能看懂即可(个人见解)

  5. 异常是可以考虑使用的,可以看看ISO C++网站和C++ 核心指南62,异常会导致程序的二进制体积有膨胀(5%-15%),异常不能代替所有的错误码,因为异常catch会使得程序性能下降。作者认为:使用异常对于大部分C++项目仍然适用,不使用异常的麻烦大于好处,除非真因为二进制文件和实时性方面的原因需要禁用异常。

  6. 字符串默认类型时 const char[],传参时会退化成const char*,创建全局字符串最好使用const char[]

  7. 标准库容器的方法至少提供了基本异常安全保证:要了解强异常安全保证和无异常保证。

  8. vector的移动构造函数标记为noexcept才会使用移动构造,移动构造函数需要标记为noexcept,如果没有标记,代码性能可能会有较大的负面影响。

  9. shared_ptr构造优先使用make_shared

10.了解function,function用作回调很方便,支持类型擦除,它还有个好处,可以用来存储带状态的函数对象,不像C语言那样需要个void*存储状态。但需要了解它的开销,貌似48个字节是个坎。

11.堆内存管理:可以了解下jemalloc mimalloc tcmalloc

12.输入输出流可以考虑使用ios_base::sync_with_stdio(false)关闭同步,性能会提升,也最好使用\n取代endl,免得频繁刷新缓冲区。可考虑使用fmt

13.并发

  • 需要了解内存序的概念

  • 一些优质的多生产者多消费者并发队列

  • moodycamed::ConcurrentQueue

  • atomic_queue

  • Folly中MPMCQueue

  • 标准库也有些并行策略:

  • execution::seq 序列执行,不可并行

  • par:可并行化

  • par_unseq:可并行化 向量化

  • unseq:可向量化

通用方法篇

通用优化方法

  • 优化原则:不要执行不必要的代码

  • 循环优化,尽量减少临

  • 时对象的创建

  • 结构体设计时最好做到对齐

  • 尽量顺序访问数据,矩阵乘法可以很好的印证CPU Cache的作用,再考虑添加-O3 -march=native开启SIMD自动向量化

  • 缓存争用问题

  • 多看看别人的代码,别人的优化,多用优秀的开源代码


获取更多资源关注公众号;奇牛编程

相关文章:

C++性能白皮书

最近看完了《C性能白皮书》,这本书列出了一些性能优化的思路,不过只是一些指引,没有讲具体细节,我整理出了其中的关键点分享给大家: 硬件篇 作为一个程序员,想要性能优化,最好要了解些硬件&…...

华为OD机试 - 黑板上色 | 机试题算法思路 【2023】

最近更新的博客 华为OD机试 - 简易压缩算法(Python) | 机试题算法思路 【2023】 华为OD机试题 - 获取最大软件版本号(JavaScript) 华为OD机试 - 猜字谜(Python) | 机试题+算法思路 【2023】 华为OD机试 - 删除指定目录(Python) | 机试题算法思路 【2023】 华为OD机试 …...

如何在六秒内吸引观众的注意力

根据《2022国民专注力洞察报告》显示,当代人的连续专注时长,已经从2000年的12秒,下降到了现在的8秒。对于这个事实你可能难以相信,实际上这意味着,大多数互联网用户跳到一些页面上时,可能眼皮都不眨一下就离…...

FreeRTOS与UCOSIII任务状态对比

FreeRTOS任务状态 1、运行态 正在运行的任务,正在使用处理器的任务。 单核处理器中任何时候都有且只有一个任务处于运行态。 2、就绪态 已经准备就绪(非阻塞或挂起),可以立即运行但还没有运行的任务。 正在等待比自己高优先级…...

小程序 npm sill idealTree buildDeps 安装一直没反应

目录 一、问题 二、解决 1、删除.npmsrc 、清除缓存 2、更换镜像源 3、最终检测 一、问题 记录:今天npm 一直安装不成功 显示:sill idealTree buildDeps 我的版本: 我百度到换镜像源安装方法,但我尝试后,依然…...

GPT系列详解:初代GPT

本文详细解读了OpenAI公司在2018年6月发布的论文《Improving Language Understanding by Generative Pre-Training》,它其中介绍的算法也就是后来人们说的GPT。本文借鉴了李沐的这个视频,感兴趣的同学可以移步观看大神的讲解。 目录引言GPT方法无监督预训…...

为什么要使用数据库

数据保存在内存优点:存取速度快缺点:数据不能永久保存数据保存在文件优点:数据永久保存缺点:1)速度比内存操作慢,频繁的IO操作。2)查询数据不方便数据保存在数据库1)数据永久保存2&a…...

【单目标优化算法】海鸥优化算法(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

筑基六层 —— 整型提升及实用调式技巧

目录 一.修炼必备 二. 整型提升 三.实用调式技巧 一.修炼必备 1.入门必备:VS2019社区版,下载地址:Visual Studio 较旧的下载 - 2019、2017、2015 和以前的版本 (microsoft.com) 2.趁手武器:印象笔记/有道云笔记 3.修炼秘籍&…...

后端前端文件传输2中传出模式

base64文件传输 app.route(/download, methods[get]) def hello_as(): # 数据 id request.args.get("id") cur g.db.cursor() cur.execute(fselect name,grade,commentNum,cityName,sceneryThemeName from dataList where cityId? , (id,)) …...

【ZOJ 1067】Color Me Less 题解(vector+开方)

问题 颜色缩减是从一组离散颜色到较小颜色的映射。这个问题的解决方案需要在标准的24位RGB颜色空间中执行这样的映射。输入由十六个RGB颜色值的目标集合和要映射到目标集合中最接近的颜色的任意RGB颜色集合组成。为了我们的目的,RGB颜色被定义为有序三元组&#xff…...

凌恩生物经典文章:孟德尔诞辰200周年,Nature Genetics礼献豌豆高质量精细图谱

本期为大家分享的文章是2022年发表在《Nature Genetics》上的一篇文章“Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics”,作者通过结合三代pacbio测序、染色体构象捕获(Hi-C)测…...

进程间通信(二)/共享内存

⭐前言:在前面的博文中分析了什么的进程间通信和进程间通信的方式之一:管道(匿名管道和命名管道)。接下来分析第二种方式:共享内存。 要实现进程间通信,其前提是让不同进程之间看到同一份资源。所谓共享内存…...

电路模型和电路定律——“电路分析”

各位CSDN的uu们你们好呀,今天小雅兰的内容是我这学期的专业课噢,首先就学习了电路模型和电路定律,包括电路和电路模型、电流和电压的参考方向、电功率和能量、电路元件、电阻元件、电压源和电流源、基尔霍夫定律。那么现在,就让我…...

软件工程 | 第一章:软件工程学概述

软件工程学概述一、前言二、软件危机1.典型表现2.产生原因3.消除危机途径三、软件工程1.概述2.软件本质特征3.软件工程基本原理4.软件工程方法学1️⃣传统方法学2️⃣面向对象方法学四、软件生命周期五、结语一、前言 本文将讲述软件工程导论的第一章相关知识点,主…...

前端开发页面HEAD作用

文档类型 为每个 HTML 页面的第一行添加标准模式(standard mode)的声明, 这样能够确保在每个浏览器中拥有一致的表现。 <!DOCTYPE html> 语言属性 为什么使用 lang="zh-cmn-Hans" 而不是我们通常写的 lang="zh-CN" 呢? 请参考知乎上的讨论: …...

CSS开发技巧——行为技巧

CSS开发技巧——行为技巧 使用overflow-scrolling支持弹性滚动 iOS页面非body元素的滚动操作会非常卡(Android不会出现此情况)&#xff0c;通过overflow-scrolling:touch调用Safari原生滚动来支持弹性滚动&#xff0c;增加页面滚动的流畅度 场景&#xff1a;iOS页面滚动 使用t…...

PX4之代码结构

PX4开源飞控是目前主流的开源飞控项目&#xff0c;被很多公司作为飞控开发的参考。也广泛被用于现在流行的evtol验证机的飞控&#xff0c;进行初步的飞行验证。可能大多数AAM以及UAM都离不开PX4。 项目代码可以从github下载 $ git clone --recursive GitHub - PX4/PX4-Autopil…...

【C++11】可变参数模板(函数模板、类模板)

在C11之前&#xff0c;类模板和函数模板只能含有固定数量的模板参数。C11增强了模板功能&#xff0c;允许模板定义中包含0到任意个模板参数&#xff0c;这就是可变参数模板。可变参数模板的加入使得C11的功能变得更加强大&#xff0c;而由此也带来了许多神奇的用法。 可变参数模…...

centos安装高版本cmake

之前centos版本为cmake version 2.8.12.2采用yum remove卸载后重装还是这个版本,看来centos下面就是这个最新了,这说明centos煞笔。于是自己下载cmake包,然后安装。 官方cmake链接地址(3.16)(其他版本自己找,链接给你了) 1,wget下载 2,解压: tar -zxf cmake-3.16.0.…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...