当前位置: 首页 > news >正文

YOLOV8模型使用-检测-物体追踪

这个最新的物体检测模型,很厉害的样子,还有物体追踪的功能。

有官方的Python代码,直接上手试试就好,至于理论,有想研究在看论文了╮(╯_╰)╭


简单介绍

YOLOv8 中可用的模型

YOLOv8 模型的每个类别中有五个模型用于检测、分割和分类。YOLOv8 Nano 是最快和最小的,而 YOLOv8 Extra Large (YOLOv8x) 是其中最准确但最慢的。用来实际使用的时候选权重模型。

| YOLOv8n | YOLOv8s | YOLOv8m | YOLOv8l | YOLOv8x |

其他介绍,就不用管了,上手玩一下要紧。看一下几个官方介绍图片就懂了:

请添加图片描述
请添加图片描述

这里可以看到,有物体检测识别,检测,分类,轨迹,姿态的功能,下面就上手试试。


部署-简单使用【超简单】

前提安装好Python,版本需要Python>=3.8 我的是 Python 3.11.3

视频图片识别

  1. 首先,先下载官方的代码。官网代码

  2. 执行安装与检测:【执行位置是在项目目录下】

pip install -r requirements.txt
pip install ultralytics# 执行这个,会自动下载模型
# Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt to 'yolov8n.pt'...
# source 替换成需要检测的本地图片即可
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'# 也可以如下对视频进行检测
yolo task=detect mode=predict model=yolov8n.pt source=C:\Users\Administrator\Desktop\sssss-1.mp4  show=True#实例分割
yolo task=segment  mode=predict model=yolov8n-seg.pt source=C:\Users\Administrator\Desktop\sssss-1.mp4  show=True
  1. 看看这个检测出来的效果:
    请添加图片描述
    请添加图片描述请添加图片描述

  2. 是不是灰常的简单,[]( ̄▽ ̄)*

  3. 就酱紫,后面在试试其他功能。


视频流,摄像头识别

这个处理只需要把来源替换成0即可,就像这样

yolo task=detect mode=predict model=yolov8n.pt source=0 show=True

视频追踪-绘制随时间变化的轨迹【这个有意思】

可以用于视频追踪的模型是:YOLOv8n, YOLOv8n-seg and YOLOv8n-pose 【以8n举例子】

yolo track model=yolov8n.pt source=0 show=True 

这个追踪的效果就是,在识别里面多了一个ID表示固定的物体。

以下是官方代码改了一下,绘制随时间变化的轨迹

效果是这样的:
请添加图片描述

这个车流比较多感觉轨迹画的不怎么好看。

请添加图片描述

哈哈,这个卡车还识别错了 。。╮(╯▽╰)╭

不过这里可以绘制轨迹,就也可以统计这个ID物体在视频中存在的时间什么的。如果放在门店咖啡厅的摄像头里面,就可以看到顾客的停留时间。

这个轨迹变化绘制+物体追踪代码如下:

# 绘制随时间变化的轨迹
from collections import defaultdictimport cv2
import numpy as npfrom ultralytics import YOLO# Load the YOLOv8 model
model = YOLO('yolov8n.pt')# Open the video file
# video_path = "C:\\Users\\Administrator\\Desktop\\1.ts" 
video_path = 0
cap = cv2.VideoCapture(video_path)# Store the track history
track_history = defaultdict(lambda: [])# 用于保存图像
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# out_cat = cv2.VideoWriter("C:\\Users\\Administrator\\Desktop\\save.mp4", fourcc, 24, (352, 288), True)  # 保存位置/格式# Loop through the video frames
while cap.isOpened():# Read a frame from the videosuccess, frame = cap.read()if success:# Run YOLOv8 tracking on the frame, persisting tracks between framesresults = model.track(frame, persist=True)# Get the boxes and track IDsboxes = results[0].boxes.xywh.cpu()if results[0].boxes.id is not None:track_ids = results[0].boxes.id.int().cpu().tolist()# Visualize the results on the frameannotated_frame = results[0].plot()# Plot the tracksif results[0].boxes.id is not None:for box, track_id in zip(boxes, track_ids):x, y, w, h = boxtrack = track_history[track_id]track.append((float(x), float(y)))  # x, y center pointif len(track) > 30:  # retain 90 tracks for 90 framestrack.pop(0)# Draw the tracking linespoints = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))cv2.polylines(annotated_frame, [points], isClosed=False, color=(track_id*10%255, 100, 255), thickness=2)# Display the annotated framecv2.imshow("YOLOv8 Tracking", annotated_frame)# out_cat.write(annotated_frame)  # 保存视频# Break the loop if 'q' is pressedif cv2.waitKey(1) & 0xFF == ord("q"):breakelse:# Break the loop if the end of the video is reachedbreak# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()

参考资料:

  • V8官方开源地址:ultralytics :https://github.com/ultralytics/ultralytics
  • MMYOLO 开源地址:https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolov8
  • https://zhuanlan.zhihu.com/p/633779645?utm_id=0
  • https://blog.csdn.net/caobin_cumt/article/details/131009067
  • 关键的资料:https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov8/README.md

相关文章:

YOLOV8模型使用-检测-物体追踪

这个最新的物体检测模型,很厉害的样子,还有物体追踪的功能。 有官方的Python代码,直接上手试试就好,至于理论,有想研究在看论文了╮(╯_╰)╭ 简单介绍 YOLOv8 中可用的模型 YOLOv8 模型的每个类别中有五个模型用于检…...

springmvc:设置后端响应给前端的json数据转换成String格式

设置spring-mvc.xml: xml <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org/schema/beans"xmlns:context"http://www.springframework.org/schema/context"xmlns:xsi"http://www.w…...

Mac安装brew、mysql、redis

mac安装brew mac安装brewmac安装mysql并配置开机启动mac安装redis并配置开机启动 mac安装brew 第一步&#xff1a;执行. /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"第二步&#xff1a;输入开机密码 第三…...

MLC-LLM 部署RWKV World系列模型实战(3B模型Mac M2解码可达26tokens/s)

0x0. 前言 我的 ChatRWKV 学习笔记和使用指南 这篇文章是学习RWKV的第一步&#xff0c;然后学习了一下之后决定自己应该做一些什么。所以就在RWKV社区看到了这个将RWKV World系列模型通过MLC-LLM部署在各种硬件平台的需求&#xff0c;然后我就开始了解MLC-LLM的编译部署流程和…...

Unity 之 参数类型之值类型参数的用法

文章目录 基本数据类型结构体结构体的进一步补充 总结&#xff1a; 当谈论值类型参数时&#xff0c;我们可以从基本数据类型和结构体两个方面详细解释。值类型参数指的是以值的形式传递给函数或方法的数据&#xff0c;而不是引用。 基本数据类型 基本数据类型的值类型参数&…...

VScode远程连接主机

一、前期准备 1、Windows安装VSCode&#xff1b; 2、在VSCode中安装PHP Debug插件&#xff1b; 3、安装好Docker 4、在容器中安装Xdebug ①写一个展现phpinfo的php文件 <?php phpinfo(); ?>②在浏览器上打开该文件 ③复制所有信息丢到Xdebug: Installation instr…...

【iOS】属性关键字

文章目录 前言一、深拷贝与浅拷贝1、OC的拷贝方式有哪些2. OC对象实现的copy和mutableCopy分别为浅拷贝还是深拷贝&#xff1f;3. 自定义对象实现的copy和mutableCopy分别为浅拷贝还是深拷贝&#xff1f;4. 判断当前的深拷贝的类型&#xff1f;(区别是单层深拷贝还是完全深拷贝…...

【计算机基础】Git从安装到使用,详细每一步!扩展Github\Gitlab

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…...

深入了解Docker镜像操作

Docker是一种流行的容器化平台&#xff0c;它允许开发者将应用程序及其依赖项打包成容器&#xff0c;以便在不同环境中轻松部署和运行。在Docker中&#xff0c;镜像是构建容器的基础&#xff0c;有些家人们可能在服务器上对docker镜像的操作命令不是很熟悉&#xff0c;本文将深…...

嵌入式开发-单片机学习介绍

一、单片机入门篇 单片机的定义和历史 单片机是一种集成了微处理器、存储器、输入输出接口和其他功能于一体的微型计算机&#xff0c;具有高度的集成性和便携性。单片机的历史可以追溯到20世纪70年代&#xff0c;随着微电子技术的不断发展&#xff0c;单片机逐渐成为了工业控…...

5、Spring之Bean生命周期源码解析(销毁)

Bean的销毁过程 Bean销毁是发送在Spring容器关闭过程中的。 在Spring容器关闭时,比如: AnnotationConfigApplicationContext context = new AnnotationConfigApplicationContext(AppConfig.class); UserService userService = (UserService) context.getBean("userSe…...

开发多点触控MFC应用程序

当下计算机变得越来越智能化&#xff0c;越来越无所不能&#xff0c;触摸屏的普及只是时间问题了。 虽然鼠标和键盘不会很快就离开人们的视野&#xff0c;毕竟人们使用鼠标跟键盘已经成为一种习惯&#xff0c;但是处理信息或者说操作计算机的其他方法也层出不穷——比如触控技术…...

使用nlohmann json库进行序列化与反序列化

nlohmann源码仓库&#xff1a;https://github.com/nlohmann/json使用方式&#xff1a;将其nlohmann文件夹加入&#xff0c;包含其头文件json.hpp即可demo #include <iostream> #include "nlohmann/json.hpp" #include <vector>using json nlohmann::js…...

高教社杯数模竞赛特辑论文篇-2012年A题:葡萄酒的评价(附获奖论文)

目录 摘 要 一、问题重述 二、问题分析 2.1 问题一的分析 2.2 问题二的分析...

手写RPC——数据序列化工具protobuf

手写RPC——数据序列化工具protobuf Protocol Buffers&#xff08;protobuf&#xff09;是一种用于结构化数据序列化的开源库和协议。下面是 protobuf 的一些优点和缺点&#xff1a; 优点&#xff1a; 高效的序列化和反序列化&#xff1a;protobuf 使用二进制编码&#xff0c…...

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型&#xff08;全网首发&#xff09; 一、学习资料 (LGBM)是一种基于梯度增强决策树(GBDT)算法。 本次研究三个内容&#xff0c;分别是回归预测&#xff0c;二分类预测和多分类预…...

Linux进程间通信的几种方式

分析&回答 管道&#xff08;pipe&#xff09;以及有名管道&#xff1a;管道可用于有亲缘关系进程间通信&#xff0c;有名管道克服了管道没有名字的限制&#xff0c;因此具有管道的所有功能之外&#xff0c;它还允许无亲缘关系进程间通信。信号&#xff08;Signal&#xff…...

Android 13.0 Launcher3定制之双层改单层(去掉抽屉式一)

1.概述 在13.0的系统产品开发中,对于在Launcher3中的抽屉模式也就是双层模式,在系统原生的Launcher3中就是双层抽屉模式的, 但是在通过抽屉上滑的模式拉出app列表页,但是在一些产品开发中,对于单层模式的Launcher3的产品模式也是常用的功能, 所以需要了解抽屉模式,然后修…...

【uniapp 配置启动页面隐私弹窗】

为什么需要配置 原因 根据工业和信息化部关于开展APP侵害用户权益专项整治要求&#xff0c;App提交到应用市场必须满足以下条件&#xff1a; 1.应用启动运行时需弹出隐私政策协议&#xff0c;说明应用采集用户数据 2.应用不能强制要求用户授予权限&#xff0c;即不能“不给权…...

2分钟讲清楚C#的委托, C语言的函数指针,Java的函数式接口

很多小伙伴学习C# 的委托时往往一头雾水, 不明白委托是什么, 有什么作用, 今天我就用2分钟讲清楚 这是一个C# 的控制台程序 定义一个最简单的委托 delegate int Calculate(int a, int b); 这相当于定义了一个Calculate类型, 只不过这个类型需要传入2个int类型的参数 返回值也…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...