当前位置: 首页 > news >正文

【面试经典150题】跳跃游戏

题目链接

给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false

  • 1 <= nums.length <= 1 0 4 10^4 104
  • 0 <= nums[i] <= 1 0 5 10^5 105

分析:

假设当前位于nums[i],表示该元素后面的nums[i]个元素任我跳,那该跳哪个呢?

是不是得考虑跳到哪一个位置下下一步可以跳得更远。这个由index+nums[i]决定。

也就是说后面的nums[i]个元素里,哪个索引+元素值最大就跳到哪里。

/*** @param {number[]} nums* @return {boolean}*/
var canJump = function (nums) {let i = 0;let nextIndex;let maxVal = 0;while (i + nums[i] < nums.length - 1) {if (nums[i] === 0) {return false;}for (let j = i + 1; j <= i + nums[i]; j++) {if (j + nums[j] > maxVal) {nextIndex = j;maxVal = j + nums[j];}}maxVal = 0;i = nextIndex;}return true;
};

时间复杂度: O ( n 2 ) O(n^2) O(n2)

空间复杂度: O ( 1 ) O(1) O(1)

时间复杂度太高,换个思路:

维护一个最大可达位置maxReach。

/*** @param {number[]} nums* @return {boolean}*/
var canJump = function (nums) {let maxReach=0;for(let i=0;i<nums.length;i++){if(i>maxReach){return false;}maxReach=Math.max(maxReach,i+nums[i]);if(maxReach>=nums.length-1){return true;}}return true;
};

时间复杂度: O ( n ) O(n) O(n)

空间复杂度: O ( 1 ) O(1) O(1)

相关文章:

【面试经典150题】跳跃游戏

题目链接 给你一个非负整数数组 nums &#xff0c;你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标&#xff0c;如果可以&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 1 < nums…...

【Rust】003-基础语法:流程控制

【Rust】003-基础语法&#xff1a;流程控制 文章目录 【Rust】003-基础语法&#xff1a;流程控制一、概述二、if 表达式1、语法格式2、多个3、获取表达式的值 三、循环1、loop&#xff1a;无限循环&#xff0c;可跳出无限循环跳出循环返回值 2、while&#xff1a;条件循环&…...

0829【综述】面向时空数据的区块链研究综述

摘要:时空数据包括时间和空间2个维度,常被应用于物流、供应链等领域。传统的集中式存储方式虽然具有一定的便捷性,但不能充分满足时空数据存储及查询等要求,而区块链技术采用去中心化的分布式存储机制,并通过共识协议来保证数据的安全性。研究现有区块链1.0、2.0和以Block-DAG为…...

MySQL高级篇(SQL优化、索引优化、锁机制、主从复制)

目录 0 存储引擎介绍1 SQL性能分析2 常见通用的JOIN查询 SQL执行加载顺序七种JOIN写法3 索引介绍 3.1 索引是什么3.2 索引优劣势3.3 索引分类和建索引命令语句3.4 索引结构与检索原理3.5 哪些情况适合建索引3.6 哪些情况不适合建索引4 性能分析 4.1 性能分析前提知识4.2 Expla…...

YOLOV8模型使用-检测-物体追踪

这个最新的物体检测模型&#xff0c;很厉害的样子&#xff0c;还有物体追踪的功能。 有官方的Python代码&#xff0c;直接上手试试就好&#xff0c;至于理论&#xff0c;有想研究在看论文了╮(╯_╰)╭ 简单介绍 YOLOv8 中可用的模型 YOLOv8 模型的每个类别中有五个模型用于检…...

springmvc:设置后端响应给前端的json数据转换成String格式

设置spring-mvc.xml: xml <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org/schema/beans"xmlns:context"http://www.springframework.org/schema/context"xmlns:xsi"http://www.w…...

Mac安装brew、mysql、redis

mac安装brew mac安装brewmac安装mysql并配置开机启动mac安装redis并配置开机启动 mac安装brew 第一步&#xff1a;执行. /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"第二步&#xff1a;输入开机密码 第三…...

MLC-LLM 部署RWKV World系列模型实战(3B模型Mac M2解码可达26tokens/s)

0x0. 前言 我的 ChatRWKV 学习笔记和使用指南 这篇文章是学习RWKV的第一步&#xff0c;然后学习了一下之后决定自己应该做一些什么。所以就在RWKV社区看到了这个将RWKV World系列模型通过MLC-LLM部署在各种硬件平台的需求&#xff0c;然后我就开始了解MLC-LLM的编译部署流程和…...

Unity 之 参数类型之值类型参数的用法

文章目录 基本数据类型结构体结构体的进一步补充 总结&#xff1a; 当谈论值类型参数时&#xff0c;我们可以从基本数据类型和结构体两个方面详细解释。值类型参数指的是以值的形式传递给函数或方法的数据&#xff0c;而不是引用。 基本数据类型 基本数据类型的值类型参数&…...

VScode远程连接主机

一、前期准备 1、Windows安装VSCode&#xff1b; 2、在VSCode中安装PHP Debug插件&#xff1b; 3、安装好Docker 4、在容器中安装Xdebug ①写一个展现phpinfo的php文件 <?php phpinfo(); ?>②在浏览器上打开该文件 ③复制所有信息丢到Xdebug: Installation instr…...

【iOS】属性关键字

文章目录 前言一、深拷贝与浅拷贝1、OC的拷贝方式有哪些2. OC对象实现的copy和mutableCopy分别为浅拷贝还是深拷贝&#xff1f;3. 自定义对象实现的copy和mutableCopy分别为浅拷贝还是深拷贝&#xff1f;4. 判断当前的深拷贝的类型&#xff1f;(区别是单层深拷贝还是完全深拷贝…...

【计算机基础】Git从安装到使用,详细每一步!扩展Github\Gitlab

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…...

深入了解Docker镜像操作

Docker是一种流行的容器化平台&#xff0c;它允许开发者将应用程序及其依赖项打包成容器&#xff0c;以便在不同环境中轻松部署和运行。在Docker中&#xff0c;镜像是构建容器的基础&#xff0c;有些家人们可能在服务器上对docker镜像的操作命令不是很熟悉&#xff0c;本文将深…...

嵌入式开发-单片机学习介绍

一、单片机入门篇 单片机的定义和历史 单片机是一种集成了微处理器、存储器、输入输出接口和其他功能于一体的微型计算机&#xff0c;具有高度的集成性和便携性。单片机的历史可以追溯到20世纪70年代&#xff0c;随着微电子技术的不断发展&#xff0c;单片机逐渐成为了工业控…...

5、Spring之Bean生命周期源码解析(销毁)

Bean的销毁过程 Bean销毁是发送在Spring容器关闭过程中的。 在Spring容器关闭时,比如: AnnotationConfigApplicationContext context = new AnnotationConfigApplicationContext(AppConfig.class); UserService userService = (UserService) context.getBean("userSe…...

开发多点触控MFC应用程序

当下计算机变得越来越智能化&#xff0c;越来越无所不能&#xff0c;触摸屏的普及只是时间问题了。 虽然鼠标和键盘不会很快就离开人们的视野&#xff0c;毕竟人们使用鼠标跟键盘已经成为一种习惯&#xff0c;但是处理信息或者说操作计算机的其他方法也层出不穷——比如触控技术…...

使用nlohmann json库进行序列化与反序列化

nlohmann源码仓库&#xff1a;https://github.com/nlohmann/json使用方式&#xff1a;将其nlohmann文件夹加入&#xff0c;包含其头文件json.hpp即可demo #include <iostream> #include "nlohmann/json.hpp" #include <vector>using json nlohmann::js…...

高教社杯数模竞赛特辑论文篇-2012年A题:葡萄酒的评价(附获奖论文)

目录 摘 要 一、问题重述 二、问题分析 2.1 问题一的分析 2.2 问题二的分析...

手写RPC——数据序列化工具protobuf

手写RPC——数据序列化工具protobuf Protocol Buffers&#xff08;protobuf&#xff09;是一种用于结构化数据序列化的开源库和协议。下面是 protobuf 的一些优点和缺点&#xff1a; 优点&#xff1a; 高效的序列化和反序列化&#xff1a;protobuf 使用二进制编码&#xff0c…...

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)

【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型&#xff08;全网首发&#xff09; 一、学习资料 (LGBM)是一种基于梯度增强决策树(GBDT)算法。 本次研究三个内容&#xff0c;分别是回归预测&#xff0c;二分类预测和多分类预…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...