当前位置: 首页 > news >正文

pytorch异常——loss异常,不断增大,并且loss出现inf

文章目录

    • 异常报错
    • 异常截图
    • 异常代码
    • 原因解释
    • 修正代码
    • 执行结果

异常报错

epoch1:loss3667.782471
epoch2:loss65358620.000000
epoch3:loss14979486720.000000
epoch4:loss1739650891776.000000
epoch5:loss12361745880317952.000000
epoch6:loss2740315398365287284736.000000
epoch7:loss1176857261847129541794856960.000000
epoch8:loss7211548287231028836649926656.000000
epoch9:loss7537356298471407320145204346880.000000
epoch10:lossinf

异常截图

异常代码

# 初始化模型的参数,使用正态分布来初始化权重参数,将偏置设置为0
net[0].weight.data.normal_(0,0.01)
net[0].bias.data.fill_(0)# 定义损失函数
loss = nn.MSELoss()# 定义优化算法
trainer = torch.optim.SGD(net.parameters(),lr = 0.03)# 训练
# 训练过程:遍历完整的数据集,每一次都是抽取一个batch_size,然后在进行前向传播计算对应的loss,然后将loss反向传播,计算梯度,然后根据梯度优化参数
num_epochs = 10
for epoch in range(num_epochs):for X,y in data_iter:l = loss(net(X),y)l.backward()trainer.step()l = loss(net(features),labels)print(f'epoch{epoch+1}:loss{l:f}')

原因解释

  • 每一个batch_size之后,都没有进行梯度清零,模型参数更新是基于之前所有的mini_batch,并不是基于当前的mini_batch

  • 导致如下问题

    • 梯度爆炸:如果梯度值在每次迭代中都相对较大,那么累积梯度可能会迅速变得非常大,导致权重更新太过极端。这通常会导致损失值变成 NaN 或 Inf
    • 训练不稳定:如果梯度值在每次迭代中都相对较大,那么累积梯度可能会迅速变得非常大,导致权重更新太过极端。这通常会导致损失值变成 NaN 或 Inf
  • 梯度下降的基本假设:

    • 每次更新都是基于最近一次计算出的梯度,

修正代码

# 初始化模型的参数,使用正态分布来初始化权重参数,将偏置设置为0
net[0].weight.data.normal_(0,0.01)
net[0].bias.data.fill_(0)# 定义损失函数
loss = nn.MSELoss()# 定义优化算法
trainer = torch.optim.SGD(net.parameters(),lr = 0.03)# 训练
# 训练过程:遍历完整的数据集,每一次都是抽取一个batch_size,然后在进行前向传播计算对应的loss,然后将loss反向传播,计算梯度,然后根据梯度优化参数
num_epochs = 10
for epoch in range(num_epochs):for X,y in data_iter:l = loss(net(X),y)trainer.zero_grad()l.backward()trainer.step()l = loss(net(features),labels)print(f'epoch{epoch+1}:loss{l:f}')

执行结果

在这里插入图片描述

相关文章:

pytorch异常——loss异常,不断增大,并且loss出现inf

文章目录 异常报错异常截图异常代码原因解释修正代码执行结果 异常报错 epoch1:loss3667.782471 epoch2:loss65358620.000000 epoch3:loss14979486720.000000 epoch4:loss1739650891776.000000 epoch5:loss12361745880317952.000000 epoch6:loss2740315398365287284736.000000…...

Lua学习(一)

lua基础学习 LUA 语言1. 什么是lua?1.1 准备工作 2. 基本语法2.1 注释2.2 标识符2.3 关键字2.4 全局变量 3. 数据类型4. 变量4.1 赋值语句 5. 循环5.1 while循环5.2 for循环5.3泛型for循环5.4 repeat until 循环5.5 break 语句 6. 流程控制6.1 if语句6.2 if else 语…...

Python:列表推导式

相关阅读 Python专栏https://blog.csdn.net/weixin_45791458/category_12403403.html?spm1001.2014.3001.5482 列表推导式使得创建特定列表的方式更简洁。常见的用法为,对序列或可迭代对象中的每个元素应用某种操作,用生成的结果创建新的列表&#xff…...

应急三维电子沙盘数字孪生系统

一、简介应急三维电子沙盘数字孪生系统是一种基于虚拟现实技术和数字孪生技术的应急管理工具。它通过将真实世界的地理环境与虚拟世界的模拟环境相结合,实现了对应急场景的模拟、分析和决策支持。该系统主要由三维电子沙盘和数字孪生模型两部分组成。三维电子沙盘是…...

LeetCode每日一题:1654. 到家的最少跳跃次数(2023.8.30 C++)

目录 1654. 到家的最少跳跃次数 题目描述: 实现代码与解析: bfs 1654. 到家的最少跳跃次数 题目描述: 有一只跳蚤的家在数轴上的位置 x 处。请你帮助它从位置 0 出发,到达它的家。 跳蚤跳跃的规则如下: 它可以 …...

数据结构例题代码及其讲解-栈与队列

栈与队列 栈Stack 后进先出 ​ 栈的结构体定义及基本操作。 #define MaxSize 50 typedef struct {int data[MaxSize];//栈中存放数据类型为整型int top;//栈顶指针 }Stack;初始化 ​ 这里初始化时是将栈顶指针指向-1,有些则是指向0,因此后续入栈出栈…...

【Spark】Pyspark RDD

1. RDD算子1.1 文件 <> rdd对象1.2 map、foreach、mapPartitions、foreach Partitions1.3 flatMap 先map再解除嵌套1.4 reduceByKey、reduce、fold 分组聚合1.5 mapValue 二元组value进行map操作1.6 groupBy、groupByKey1.7 filter、distinct 过滤筛选1.8 union 合并1.9 …...

数学建模:Logistic回归预测

&#x1f506; 文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 数学建模&#xff1a;Logistic回归预测 Logistic回归预测 logistic方程的定义&#xff1a; x t 1 c a e b t x_{t}\frac{1}{cae^{bt}}\quad xt​caebt1​ d x d t − a b e b t ( c a e b t ) 2 >…...

一个面向MCU的小型前后台系统

JxOS简介 JxOS面向MCU的小型前后台系统&#xff0c;提供消息、事件等服务&#xff0c;以及软件定时器&#xff0c;低功耗管理&#xff0c;按键&#xff0c;led等常用功能模块。 gitee仓库地址为&#xff08;复制到浏览器打开&#xff09;&#xff1a; https://gitee.com/jer…...

软件外包开发人员分类

在软件开发中&#xff0c;通常会分为前端开发和后端开发&#xff0c;下面和大家分享软件开发中的前端开发和后端开发分类和各自的职责&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1. 前端开发&…...

HTML 元素被定义为块级元素或内联元素

大多数 HTML 元素被定义为块级元素或内联元素。 10. 块级元素 块级元素在浏览器显示时&#xff0c;通常会以新行来开始&#xff08;和结束&#xff09;。 我们已经学习过的块级元素有: <h1>, <p>, <ul>, <table> 等。 值得注意的是: <p> 标签…...

单调递增的数字【贪心算法】

单调递增的数字 当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时&#xff0c;我们称这个整数是单调递增的。 给定一个整数 n &#xff0c;返回 小于或等于 n 的最大数字&#xff0c;且数字呈 单调递增 。 public class Solution {public int monotoneIncreasingDigits…...

gnuradio-hackrf_info.exe -FM频率使用

97910000...

JVM学习(三)--生产环境的线程问题诊断

1.如何定位哪个进程对cpu占用过高 使用top命令 2.如何定位到某个进程的具体某个线程 使用ps H -eo pid,tid,%cpu | grep 进程id (可以具体定位到某个进程的某个线程的cpu占用情况) 3.如何查看有问题线程的具体信息&#xff0c;定位到代码的行数 使用jstack 进程id 可以找…...

PHP数组处理$arr1转换为$arr2

请编写一段程序将$arr1转换为$arr2 $arr1 array( 0>array (fid>1,tid>1,name>Name1), 1>array (fid>2,tid>2,name>Name2), 2>array (fid>3,tid>5,name>Name3), 3>array (fid>4,tid>7,name>Name4), 4>array (fid>5,tid…...

ATF(TF-A)安全通告 TFV-10 (CVE-2022-47630)

安全之安全(security)博客目录导读 ATF(TF-A)安全通告汇总 目录 一、ATF(TF-A)安全通告 TFV-10 (CVE-2022-47630) 二、CVE-2022-47630 2.1 Bug 1:证书校验不足 2.2 Bug 2:auth_nvctr()中缺少边界检查...

详解 SpringMVC 中获取请求参数

文章目录 1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、[RequestParam ](/RequestParam )4、[RequestHeader ](/RequestHeader )5、[CookieValue ](/CookieValue )6、通过POJO获取请求参数7、解决获取请求参数的乱码问题总结 在Spring MVC中&#xff0c;获取请…...

Message: ‘chromedriver‘ executable may have wrong permissions.

今天运行项目遇到如下代码 driverwebdriver.Chrome(chrome_driver, chrome_optionsoptions)上述代码运行报错如下&#xff1a; Message: chromedriver executable may have wrong permissions. Please see https://sites.google.com/a/chromium.org/chromedriver/home出错的原…...

每日一题 1372二叉树中的最长交错路径

题目 给你一棵以 root 为根的二叉树&#xff0c;二叉树中的交错路径定义如下&#xff1a; 选择二叉树中 任意 节点和一个方向&#xff08;左或者右&#xff09;。如果前进方向为右&#xff0c;那么移动到当前节点的的右子节点&#xff0c;否则移动到它的左子节点。改变前进方…...

【力扣每日一题】2023.9.2 最多可以摧毁的敌人城堡数量

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 这道题难在阅读理解&#xff0c;题目看得我匪夷所思&#xff0c;错了好多个测试用例才明白题目说的是什么。 我简单翻译一下就是寻找1和…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...