pytorch异常——loss异常,不断增大,并且loss出现inf
文章目录
- 异常报错
- 异常截图
- 异常代码
- 原因解释
- 修正代码
- 执行结果
异常报错
epoch1:loss3667.782471
epoch2:loss65358620.000000
epoch3:loss14979486720.000000
epoch4:loss1739650891776.000000
epoch5:loss12361745880317952.000000
epoch6:loss2740315398365287284736.000000
epoch7:loss1176857261847129541794856960.000000
epoch8:loss7211548287231028836649926656.000000
epoch9:loss7537356298471407320145204346880.000000
epoch10:lossinf
异常截图

异常代码
# 初始化模型的参数,使用正态分布来初始化权重参数,将偏置设置为0
net[0].weight.data.normal_(0,0.01)
net[0].bias.data.fill_(0)# 定义损失函数
loss = nn.MSELoss()# 定义优化算法
trainer = torch.optim.SGD(net.parameters(),lr = 0.03)# 训练
# 训练过程:遍历完整的数据集,每一次都是抽取一个batch_size,然后在进行前向传播计算对应的loss,然后将loss反向传播,计算梯度,然后根据梯度优化参数
num_epochs = 10
for epoch in range(num_epochs):for X,y in data_iter:l = loss(net(X),y)l.backward()trainer.step()l = loss(net(features),labels)print(f'epoch{epoch+1}:loss{l:f}')
原因解释
-
每一个batch_size之后,都没有进行梯度清零,模型参数更新是基于之前所有的mini_batch,并不是基于当前的mini_batch
-
导致如下问题
- 梯度爆炸:如果梯度值在每次迭代中都相对较大,那么累积梯度可能会迅速变得非常大,导致权重更新太过极端。这通常会导致损失值变成 NaN 或 Inf
- 训练不稳定:如果梯度值在每次迭代中都相对较大,那么累积梯度可能会迅速变得非常大,导致权重更新太过极端。这通常会导致损失值变成 NaN 或 Inf
-
梯度下降的基本假设:
- 每次更新都是基于最近一次计算出的梯度,
修正代码
# 初始化模型的参数,使用正态分布来初始化权重参数,将偏置设置为0
net[0].weight.data.normal_(0,0.01)
net[0].bias.data.fill_(0)# 定义损失函数
loss = nn.MSELoss()# 定义优化算法
trainer = torch.optim.SGD(net.parameters(),lr = 0.03)# 训练
# 训练过程:遍历完整的数据集,每一次都是抽取一个batch_size,然后在进行前向传播计算对应的loss,然后将loss反向传播,计算梯度,然后根据梯度优化参数
num_epochs = 10
for epoch in range(num_epochs):for X,y in data_iter:l = loss(net(X),y)trainer.zero_grad()l.backward()trainer.step()l = loss(net(features),labels)print(f'epoch{epoch+1}:loss{l:f}')
执行结果

相关文章:
pytorch异常——loss异常,不断增大,并且loss出现inf
文章目录 异常报错异常截图异常代码原因解释修正代码执行结果 异常报错 epoch1:loss3667.782471 epoch2:loss65358620.000000 epoch3:loss14979486720.000000 epoch4:loss1739650891776.000000 epoch5:loss12361745880317952.000000 epoch6:loss2740315398365287284736.000000…...
Lua学习(一)
lua基础学习 LUA 语言1. 什么是lua?1.1 准备工作 2. 基本语法2.1 注释2.2 标识符2.3 关键字2.4 全局变量 3. 数据类型4. 变量4.1 赋值语句 5. 循环5.1 while循环5.2 for循环5.3泛型for循环5.4 repeat until 循环5.5 break 语句 6. 流程控制6.1 if语句6.2 if else 语…...
Python:列表推导式
相关阅读 Python专栏https://blog.csdn.net/weixin_45791458/category_12403403.html?spm1001.2014.3001.5482 列表推导式使得创建特定列表的方式更简洁。常见的用法为,对序列或可迭代对象中的每个元素应用某种操作,用生成的结果创建新的列表ÿ…...
应急三维电子沙盘数字孪生系统
一、简介应急三维电子沙盘数字孪生系统是一种基于虚拟现实技术和数字孪生技术的应急管理工具。它通过将真实世界的地理环境与虚拟世界的模拟环境相结合,实现了对应急场景的模拟、分析和决策支持。该系统主要由三维电子沙盘和数字孪生模型两部分组成。三维电子沙盘是…...
LeetCode每日一题:1654. 到家的最少跳跃次数(2023.8.30 C++)
目录 1654. 到家的最少跳跃次数 题目描述: 实现代码与解析: bfs 1654. 到家的最少跳跃次数 题目描述: 有一只跳蚤的家在数轴上的位置 x 处。请你帮助它从位置 0 出发,到达它的家。 跳蚤跳跃的规则如下: 它可以 …...
数据结构例题代码及其讲解-栈与队列
栈与队列 栈Stack 后进先出 栈的结构体定义及基本操作。 #define MaxSize 50 typedef struct {int data[MaxSize];//栈中存放数据类型为整型int top;//栈顶指针 }Stack;初始化 这里初始化时是将栈顶指针指向-1,有些则是指向0,因此后续入栈出栈…...
【Spark】Pyspark RDD
1. RDD算子1.1 文件 <> rdd对象1.2 map、foreach、mapPartitions、foreach Partitions1.3 flatMap 先map再解除嵌套1.4 reduceByKey、reduce、fold 分组聚合1.5 mapValue 二元组value进行map操作1.6 groupBy、groupByKey1.7 filter、distinct 过滤筛选1.8 union 合并1.9 …...
数学建模:Logistic回归预测
🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 数学建模:Logistic回归预测 Logistic回归预测 logistic方程的定义: x t 1 c a e b t x_{t}\frac{1}{cae^{bt}}\quad xtcaebt1 d x d t − a b e b t ( c a e b t ) 2 >…...
一个面向MCU的小型前后台系统
JxOS简介 JxOS面向MCU的小型前后台系统,提供消息、事件等服务,以及软件定时器,低功耗管理,按键,led等常用功能模块。 gitee仓库地址为(复制到浏览器打开): https://gitee.com/jer…...
软件外包开发人员分类
在软件开发中,通常会分为前端开发和后端开发,下面和大家分享软件开发中的前端开发和后端开发分类和各自的职责,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。 1. 前端开发&…...
HTML 元素被定义为块级元素或内联元素
大多数 HTML 元素被定义为块级元素或内联元素。 10. 块级元素 块级元素在浏览器显示时,通常会以新行来开始(和结束)。 我们已经学习过的块级元素有: <h1>, <p>, <ul>, <table> 等。 值得注意的是: <p> 标签…...
单调递增的数字【贪心算法】
单调递增的数字 当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时,我们称这个整数是单调递增的。 给定一个整数 n ,返回 小于或等于 n 的最大数字,且数字呈 单调递增 。 public class Solution {public int monotoneIncreasingDigits…...
gnuradio-hackrf_info.exe -FM频率使用
97910000...
JVM学习(三)--生产环境的线程问题诊断
1.如何定位哪个进程对cpu占用过高 使用top命令 2.如何定位到某个进程的具体某个线程 使用ps H -eo pid,tid,%cpu | grep 进程id (可以具体定位到某个进程的某个线程的cpu占用情况) 3.如何查看有问题线程的具体信息,定位到代码的行数 使用jstack 进程id 可以找…...
PHP数组处理$arr1转换为$arr2
请编写一段程序将$arr1转换为$arr2 $arr1 array( 0>array (fid>1,tid>1,name>Name1), 1>array (fid>2,tid>2,name>Name2), 2>array (fid>3,tid>5,name>Name3), 3>array (fid>4,tid>7,name>Name4), 4>array (fid>5,tid…...
ATF(TF-A)安全通告 TFV-10 (CVE-2022-47630)
安全之安全(security)博客目录导读 ATF(TF-A)安全通告汇总 目录 一、ATF(TF-A)安全通告 TFV-10 (CVE-2022-47630) 二、CVE-2022-47630 2.1 Bug 1:证书校验不足 2.2 Bug 2:auth_nvctr()中缺少边界检查...
详解 SpringMVC 中获取请求参数
文章目录 1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、[RequestParam ](/RequestParam )4、[RequestHeader ](/RequestHeader )5、[CookieValue ](/CookieValue )6、通过POJO获取请求参数7、解决获取请求参数的乱码问题总结 在Spring MVC中,获取请…...
Message: ‘chromedriver‘ executable may have wrong permissions.
今天运行项目遇到如下代码 driverwebdriver.Chrome(chrome_driver, chrome_optionsoptions)上述代码运行报错如下: Message: chromedriver executable may have wrong permissions. Please see https://sites.google.com/a/chromium.org/chromedriver/home出错的原…...
每日一题 1372二叉树中的最长交错路径
题目 给你一棵以 root 为根的二叉树,二叉树中的交错路径定义如下: 选择二叉树中 任意 节点和一个方向(左或者右)。如果前进方向为右,那么移动到当前节点的的右子节点,否则移动到它的左子节点。改变前进方…...
【力扣每日一题】2023.9.2 最多可以摧毁的敌人城堡数量
目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 这道题难在阅读理解,题目看得我匪夷所思,错了好多个测试用例才明白题目说的是什么。 我简单翻译一下就是寻找1和…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...
