2023年高教社杯 国赛数学建模思路 - 案例:最短时间生产计划安排
文章目录
- 0 赛题思路
- 1 模型描述
- 2 实例
- 2.1 问题描述
- 2.2 数学模型
- 2.2.1 模型流程
- 2.2.2 符号约定
- 2.2.3 求解模型
- 2.3 相关代码
- 2.4 模型求解结果
- 建模资料
0 赛题思路
(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog
最短时间生产计划模型
该模型出现在好几个竞赛赛题上,预测2023今年国赛也会与该模型相关。
1 模型描述
离散系统仿真在工业生产的工序安排中起到了相当重要的作用,如何就一些内部机制复杂的离散问题建立简单易行、可监测性强的数学模型一直是仿真技术的研究热点.
离散事件系统现有三种仿真建模策略,即:
- 事件调度法
- 活动扫描法
- 进程交互法.
该模型demo学长采用了其中的活动扫描法对生产中的一个实际例子进行了处理.
活动扫描法对于各事件之间相关性很强的系统有着很好的适用性.
2 实例
2.1 问题描述
在许多工厂生产过程中,由于设备的数量、产品加工的次序限制,往往不能简单地安排生产任务.我们设想,应用强大的数学软件配合简单易行的方法进行安排.
设某重型机械厂产品都是单件性的,其中有一车间共有4种不同设备,现接受6件产品的加工任务,每件产品接受的程序在指定的设备上加工,其工序与加工周期如下表
现在我们根据这一实际问题,寻求安排的方法.
要求:
1、每件产品必须按规定的工序加工,不得颠倒.
2、每台设备在同一时间只能担任一项任务(每件产品的每个工序为一个任务).
3、在尽可能短的时间里,完成所接受的全部任务.
为了节省电能,合理分配生产任务,厂方还要求:
1、做出每件产品的每个工序开工、完工时间表.
2、给出每台设备承担任务的时间表.
2.2 数学模型
2.2.1 模型流程
2.2.2 符号约定
2.2.3 求解模型
2.3 相关代码
clear
clc
seq=[3 1 2 3 4 0 0 0 %各产品加工时所用的设备的次序1 4 2 3 0 0 0 03 4 1 2 1 0 0 02 3 4 1 4 3 0 04 2 3 4 1 3 4 01 2 1 3 4 1 3 1];tim=[8 2 4 24 6 0 0 0 %加工对应使用的时间4 5 3 4 0 0 0 03 7 15 20 8 0 0 07 6 21 1 16 3 0 010 4 8 4 12 6 1 01 4 7 3 5 2 5 8];
whole=[0 0 0 0];
for i=1:6for j=1:8if(seq(i,j)~=0)whole(seq(i,j))=whole(seq(i,j))+tim(i,j);endend
end
whole %生产各件产品所需的总时间mes=cell(4,1); %记录各个设备的工作时间(对应于上面tim的位置)
for k=1:4mes{k,1}=zeros(6,8);for j=1:8for i=1:6if(seq(i,j)==k)mes{k,1}(i,j)=tim(i,j);elsemes{k,1}(i,j)=100;endendend
endturn=cell(5,100); %记录四个设备的开关时间及加工对象(on(i))
for i=1:4for j=1:100turn{i,j}='off';end
end
for i=1:100turn{5,i}=[num2str(i) '分'];
endopen=zeros(6,8);
%记录6个产品的加工进度,0表示未进行,1表示已开始(或已结束),2表示可选,3表示没有这个程序
for i=1:6open(i,1)=2;
end
for i=1:6for j=1:8if seq(i,j)==0open(i,j)=3;endend
endgongxu=zeros(6,1);
dai=zeros(4,1);
j=1;
s=[1 1 1 1 1 3 3 3
1 1 1 1 3 3 3 3
1 1 1 1 1 3 3 3
1 1 1 1 1 1 3 3
1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 1];
while isequal(open,s)==0on=[];for i=1:4if turn{i,j}=='off'
%在turn矩阵中逐列搜索,若设备处于关机状态,则作记录(可用)on=[on i];endendl1=length(on);for m=1:l1 %在整个生产计划中(对设备逐个)寻找能够选作操作的步骤[x,y]=find(open==2);l2=length(x);a=[x(1) y(1)];for k=1:l2 %对某个设备on(m),找出当前它能操作的步骤中耗时最小的一个if mes{on(m)}(a(1),a(2))>mes{on(m)}(x(k),y(k))a=[x(k) y(k)];endendif turn{on(m),j}=='off' & mes{on(m)}(a(1),a(2))~=100
%若时间为100则意味着这个步骤不属于我们希望使用的那件设备while tim(a(1),a(2))>0turn{on(m),tim(a(1),a(2))+j-1}=a(1);tim(a(1),a(2))=tim(a(1),a(2))-1;endendendfor i=1:4if turn{i,j}~='off'dai(i)=turn{i,j};endendfor i=1:4if turn{i,j}~='off' & turn{i,j+1}=='off'gongxu(turn{i,j})=gongxu(turn{i,j})+1;open(turn{i,j},gongxu(turn{i,j}))=1;endif gongxu(dai(i))<8 & open(dai(i),gongxu(dai(i))+1)~=3 & turn{i,j+1}=='off'open(dai(i),gongxu(dai(i))+1)=2;endendj=j+1;
end
2.4 模型求解结果
每件产品的每个工序开工、完工时间表
每台设备承担任务的时间表
从结果中我们可以看到,使用这种方法,只需78个单位时间就可以完成所有的工序.而我们同时也可以在论文的开始部分看到,单就完成 就需耗费75个单位时间.可见这种方法得出的结果还是相当使人满意的,而且操作简单,可监测性强.
建模资料
资料分享: 最强建模资料
相关文章:

2023年高教社杯 国赛数学建模思路 - 案例:最短时间生产计划安排
文章目录 0 赛题思路1 模型描述2 实例2.1 问题描述2.2 数学模型2.2.1 模型流程2.2.2 符号约定2.2.3 求解模型 2.3 相关代码2.4 模型求解结果 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 最短时…...

Spring MVC介绍
MVC模式是什么 MVC 模式,全称为 Model-View-Controller(模型-视图-控制器)模式,它是一种软件架构模式,其目标是将软件的用户界面(即前台页面)和业务逻辑分离,使代码具有更高的可扩展…...

5年测试在职经验之谈:2年功能测试、3年自动化测试,从入门到不可自拔...
毕业3年了,学的是环境工程专业,毕业后零基础转行做软件测试。 已近从事测试行业8年了,自己也从事过2年的手工测试,从事期间越来越觉得如果一直在手工测试的道路上前进,并不会有很大的发展,所以通过自己的努…...

【Python数据分析】数据分析之numpy基础
实验环境:建立在Python3的基础之上 numpy提供了一种数据类型,提供了数据分析的运算基础,安装方式 pip install numpy导入numpy到python项目 import numpy as np本文以案例的方式展示numpy的基本语法,没有介绍语法的细枝末节&am…...

Swift 如何从图片数据(Data)检测原图片类型?
功能需求 如果我们之前把图片对应的数据(Data)保持在内存或数据库中,那么怎么从 Data 对象检测出原来图片的类型呢? 如上图所示:我们将 11 张不同类型的图片转换为 Data 数据,然后从 Data 对象正确检测出了原图片类型。 目前,我们的代码可以检测出 jpeg(jpg), tiff,…...
【ES6】 JavaScript 中的Object.assign
Object.assign() 是 JavaScript 中的一个方法,它用于复制源对象的所有可枚举属性到目标对象。该方法会返回目标对象。 这是其基本用法: let target Object.assign({}, source);在这个例子中,source 对象的所有可枚举属性都被复制到了 targ…...

Redis缓存和持久化
目录 Redis缓存 什么是缓存 缓存更新策略编辑 业务场景 缓存穿透 常见的解决方案 缓存雪崩 解决方案 缓存击穿 解决方案 Redis持久化 RDB持久化 执行时机 RDB方式bgsave的基本流程 AOF持久化 RDB和AOF的对比编辑 Redis主从 数据同步原理 总结 Redis缓存 …...
OpenCV(六):多通道分离与合并
目录 1.多通道分离split() 2.多通道合并merge() 3.Android JNI demo 1.多通道分离split() void cv::split ( InputArray m, OutputArrayOfArrays mv ) m:待分离的多通道图像。 mv:分离后的单通道图像,为向量vector形式。 2.多通道合并merge…...
Sql单行数据查询为多行
数据量小可以,数据量大时间太久 select distinct regexp_substr("fixed_option", [^,],1,level) c1 from "MATERIAL"."BasicInfo_Dishes_Summary" A where "fixed_option" is not NULL AND "dish_name"地三鲜…...

网络协议分析-http/https/tcp/udp
文章目录 TCP三次握手/TCP三次挥手TCP三次握手TCP四次挥手完整报文 实例代码HttpSampleClientHttpSampleServerHttpsSampleClientHttpsSampleServerTcpSampleClientTcpSampleServerUdpSampleClientUdpSampleSever 资料 TCP三次握手/TCP三次挥手 “三次握手”的目的是“为了防止…...

基于aarch64分析kernel源码 四:printk 内核打印
一、参考 Message logging with printk — The Linux Kernel documentation 如何获得正确的printk格式占位符 — The Linux Kernel documentation 使用printk记录消息 — The Linux Kernel documentation printk 内核打印 – 人人都懂物联网 (getiot.tech) 内核printk原理…...

机器人中的数值优化(六)—— 线搜索最速下降法
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,…...
postman调试注意事项
Postman是一个强大的API调试工具,它可以帮助开发人员测试和调试API端点,以确保它们按预期工作。在使用Postman进行接口调试时,以下是一些注意事项和可能出现的问题,以及如何解决这些问题。 确保请求参数正确 在测试API接口时&am…...

【C#】泛型
【C#】泛型 泛型是什么 泛型是将类型作为参数传递给类、结构、接口和方法,这些参数相当于类型占位符。当我们定义类或方法时使用占位符代替变量类型,真正使用时再具体指定数据类型,以此来达到代码重用目的。 泛型特点 提高代码重用性一定…...

CLIP:连接文本-图像
Contrastive Language-Image Pre-Training CLIP的主要目标是通过对比学习,学习匹配图像和文本。CLIP最主要的作用:可以将文本和图像表征映射到同一个表示空间 这是通过训练模型来预测哪个图像属于给定的文本,反之亦然。在训练过程中&#…...

MFC网络编程简单例程
目录 一、关于网络的部分概念1 URL(网址)及URL的解析2 URL的解析3 域名及域名解析3 IP及子网掩码4 什么是Web服务器5 HTTP的基本概念6 Socket库概念7 协议栈8 Socket库收发数据基本步骤 二、基于TCP的网络应用程序三、基于UDP的网络应用程序 一、关于网络的部分概念 1 URL(网址…...
云原生简介 (Cloud Native)
云原生(cloud Native) 云原生的概念诞生于10年前,netflix 在 AWS 上的一次演讲中。有趣的是当初没有明确的定义,现在也没有明确的定义,对不同的人来说,有不同的概念。 概念 云原生:是在云上构…...

【SpringBoot系列】 测试框架之@SpringBootTest的使用
SpringBootTest的详细介绍 SpringBootTest 是 Spring Boot 测试框架中的注解,用于标识一个测试类,以指示该类是一个 Spring Boot 应用程序的测试类。它允许你在测试环境中加载整个 Spring Boot 应用程序上下文,测试应用程序的各种组件、服务…...

【数据结构与算法篇】手撕八大排序算法之交换排序
👻内容专栏: 《数据结构与算法篇》 🐨本文概括:常见交换排序包括冒泡排序与快速排序,本篇讲述冒泡排序与快速排序的思想及实现、复杂度分析。 🐼本文作者: 花 蝶 🐸发布时间&#…...

ArcGIS Pro实践技术应用、制图、空间分析、影像分析、三维建模、空间统计分析与建模、python融合
GIS是利用电子计算机及其外部设备,采集、存储、分析和描述整个或部分地球表面与空间信息系统。简单地讲,它是在一定的地域内,将地理空间信息和 一些与该地域地理信息相关的属性信息结合起来,达到对地理和属性信息的综合管理。GIS的…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...