当前位置: 首页 > news >正文

【数据结构与算法篇】手撕八大排序算法之交换排序

在这里插入图片描述

​👻内容专栏: 《数据结构与算法篇》
🐨本文概括:常见交换排序包括冒泡排序与快速排序,本篇讲述冒泡排序与快速排序的思想及实现、复杂度分析。
🐼本文作者: 花 蝶
🐸发布时间:2023.8.27

一、冒泡排序

基本思想

冒泡排序(Bubble Sort)是一种简单的排序算法,其基本思想是通过两两交换相邻元素的位置,使得较大(或较小)的元素逐步“冒泡”到数组的一端(顶部或底部),重复“冒泡”的过程,直到序列没有要交换的元素为止,从而实现排序。

​算法步骤

1、 从数组的起始位置开始,依次比较相邻的两个元素。如果相邻元素的顺序错误(前者大于后者,或者前者小于后者,取决于是升序还是降序排序),则交换这两个元素的位置;
2、继续进行相邻元素的比较和交换,直到遍历到数组的末尾。这样一轮下来,最大(或最小)的元素就会“冒泡”到数组的一端。
3、重复上述步骤,但不再考虑已经排序好的末尾部分。每一轮操作都会将一个最大(或最小)的元素移到正确的位置。
4、 经过多轮的比较和交换,最终整个数组会变得有序。如果在某一轮没有进行任何交换操作时,说明数组已经有序,可以直接跳出循环。

动图演示

在这里插入图片描述

代码实现

//冒泡排序
//时间复杂度:O(N^2)
void BubbleSort(int* a, int n)
{//控制冒泡排序的趟数for(int i = 0; i < n - 1; i++){//假设数组有序int flag = 1;//控制每趟的过程for (int j = 0; j < n - 1 - i; j++){if (a[j] > a[j + 1]){Swap(&a[j], &a[j + 1]);flag = 0;}}//说明没有发生交换,数组已经有序,跳出循环即可if (flag == 1) break;}
}

冒泡排序的特性

冒泡排序的核心思想就是通过反复比较相邻元素并交换它们的位置,从而逐步将最大(或最小)的元素移动到合适的位置。尽管冒泡排序的时间复杂度较高(平均和最坏情况下都是 O(N^2),可以看作是一个等差数列的求和),但它的实现相对简单,适用于小规模的数据集,因此具有较强的教学意义,想必大家在刚开始学习编程时学的一个排序就是冒泡排序吧哈哈。

二、快速排序(递归版本)

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

//快排(递归版本)
void QuickSort(int* a, int begin, int end)
{if (begin >= end) return;int keyi = Partition(a, begin, end); //前序遍历//递归基准值左边的区间QuickSort(a, begin, keyi - 1);//递归基准值右边的区间QuickSort(a, keyi + 1, end);
}

上述为快速排序递归实现的主框架,发现与二叉树前序遍历规则非常像,大家在写递归框架时可想想二叉树前序遍历规则即可快速写出来,后续只需分析如何按照基准值来对区间中数据进行划分的方式即可。
下面用三个版本实现:hoare版本、挖坑法、前后指针法

1.hoare版本

1、选择基准元素key,通常是数组中的第一个元素。
2、使用两个指针LR,一个指向数组的开头(较小值的区域),一个指向数组的末尾(较大值的区域)。
3、交换的目标是L找到比基准大的元素,R找到比基准小的元素。不断交换指针所指的元素,直到两个指针相遇。
4、当两个指针相遇时,交换基准元素与当前相遇位置的元素,此时数组被划分为左右两个子数组。
5、对左右两个子数组递归地应用相同的分区步骤,直到所有子数组都有序

算法分析

👇①:原始序列
在这里插入图片描述
👇②:right向前移动,找比key小的位置,left往后移动找比key大的位置,然后交换。
在这里插入图片描述
👇③:继续往后寻找,直到两个指针相遇。
在这里插入图片描述
👇④:交换基准元素与当前相遇位置的元素。
在这里插入图片描述
👇⑤:这样子我们发现基准值左边的区间里面的元素都比基准值小,右边的区间里面的元素都比基准值大。我们可以按照前序遍历的思想对左边区间进行递归操作,右边区间也进行递归操作。

代码实现

//hoare版本
int Partition1(int* a, int left, int right)
{int keyi = left;while (left < right){//注意: 要加上left < right 否则会出现越界//若不判断等于基准值,也会出现死循环的情况//右边找小while (left < right && a[right] >= a[keyi]){right--;}//左边找大while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);return left;
}//快排(递归版本)
void QuickSort(int* a, int begin, int end)
{//当区间不存在或者只剩一个元素,就回溯if (begin >= end) return;int keyi = Partition1(a, begin, end);//前序遍历//递归基准值左边的区间QuickSort(a, begin, keyi - 1);//递归基准值右边的区间QuickSort(a, keyi + 1, end);
}

2.挖坑法

挖坑法的基本思想是:

  • 1、首先,选择一个基准元素(通常是数组中的第一个元素)作为“坑”(hole)。前提需要将这个基准元素用一个临时变量key存起来。
  • 2、将基准元素挖出,形成一个空位(坑)。
  • 3、从数组的另一端开始,从右向左遍历,找到一个比基准元素小的元素,然后将这个元素填入之前的坑中。
  • 4、继续从左向右遍历,找到一个比基准元素大的元素,然后将这个元素填入上一步的坑中。
  • 5、重复执行步骤 3 和步骤 4,直到左右指针相遇。
  • 6、此时,基准元素的位置就是这个相遇的位置,将基准元素填入这个坑中。

算法分析

👇①:原始序列
在这里插入图片描述
👇②:将基准值存放到临时变量key中,形成一个坑位。
在这里插入图片描述
👇③:从右向左遍历,R找到比基准值小的元素,将这个元素填入到之前的坑中,此时当前位置就形成了新坑。
在这里插入图片描述
👇④:紧接着,从左往右遍历,L寻找比基准值大的元素,将这个元素填入到上一步的坑中,此时当前位置形成了新坑。
在这里插入图片描述
👇⑤:重复以上步骤后,直到左右指针相遇,最后会形成一个坑,将临时变量放入坑中。
在这里插入图片描述
👇⑥:这样子我们发现基准值左边的区间里面的元素都比基准值小,右边的区间里面的元素都比基准值大。我们可以按照前序遍历的思想对左边区间进行递归操作,右边区间也进行递归操作。

代码实现

//挖坑法
int Partition2(int* a, int left, int right)
{int key = a[left];//挖坑int hole = left;while (left < right){//右边找小while (left < right && a[right] >= key){right--;}a[hole] = a[right];hole = right;//左边找大while (left < right && a[left] <= key){left++;}a[hole] = a[left];hole = left;}a[hole] = key;return hole;
}
//快排(递归版本)
void QuickSort(int* a, int begin, int end)
{//当区间不存在或者只剩一个元素,就回溯if (begin >= end) return;int keyi = Partition2(a, begin, end);//前序遍历//递归基准值左边的区间QuickSort(a, begin, keyi - 1);//递归基准值右边的区间QuickSort(a, keyi + 1, end);
}

3.前后指针法

基本思想:在快速排序的划分过程中,使用前后指针法来确定基准元素的位置,最后将数组划分成两部分,一部分小于基准元素,另一部分大于基准元素。

  • 1、首先,选择一个基准元素key(通常是数组中的第一个元素)。
  • 2、使用两个指针,prev指向数组的开头,cur指向prev的后一个位置。
  • 3、判断cur指向的数据是否小于key。若小于,则prev后移一位,cur指向的内容与prev指向的内容交换,然后cur++
  • 4、若cur指向的数据大于key,则cur++
  • 重复步骤3和步骤4,直到cur指针走完(最后一个元素的下一个位置)
  • 最后,将keyprev指向的元素交换。

动图演示

在这里插入图片描述

//前后指针法
int Partition3(int* a, int left, int right)
{int prev = left;int cur = prev + 1;int keyi = left;//cur小于key,交换++prev与cur的位置//将大的位置翻滚时往后挪动,小的位置移动前面while (cur <= right){if (a[cur] < a[keyi] && ++prev != cur){Swap(&a[cur], &a[prev]);}cur++;}//将key与prev指向的元素交换。Swap(&a[prev], &a[keyi]);return prev;
}//快排(递归版本)
void QuickSort(int* a, int begin, int end)
{//当区间不存在或者只剩一个元素,就回溯if (begin >= end) return;int keyi = Partition3(a, begin, end);//前序遍历//递归基准值左边的区间QuickSort(a, begin, keyi - 1);//递归基准值右边的区间QuickSort(a, keyi + 1, end);
}

快速排序(递归版本)的特性

时间复杂度

选择基准元素影响时间复杂度:若基准元素key偏向于所有元素中的中位数,则时间复杂度处于较好的情况,若基准元素key是所有元素中最小的,或者接近最小值,那么时间复杂度就处于较坏的情况。

  • 平均情况下的时间复杂度: 在平均情况下,快速排序的时间复杂度为 O(n log n)。这是因为在每次分区过程中,数组会被划分成大致相等的两部分。在每次递归中,都会将问题的规模减半,递归的展开图可以看作是一颗满二叉树,所以递归的深度为 O(log n),每层递归的分区操作都需要 O(n) 的时间,因此总的时间复杂度为 O(n*log n)
  • 最坏情况下的时间复杂度: 在最坏情况下,快速排序的时间复杂度为 O(n^2)。这种情况发生在每次划分后,一个子数组为空,另一个子数组包含所有的元素。这样会导致递归树变得很不平衡,每次递归的问题规模只减少一个元素。虽然快速排序通常能够避免这种情况,但在某些情况下(例如已经有序的数组),最坏情况可能出现。

在这里插入图片描述

解决方案

  • 随机数选择基准元素: 在每次划分时,随机选择一个基准元素,这可以减少最坏情况的发生概率。
  • 三数取中法: 在选择基准元素时,不仅考虑第一个和最后一个元素,还考虑数组中间位置的元素,选择其中值大小居中的元素作为基准。

👇这里提供一种三数取中的方法,以hoare版本为例:

//三数取中,返回下标
int GetMidIndex(int* a, int left, int right)
{int mid = (left + right) >> 1;if (a[left] < a[mid]){if (a[mid] < a[right]) return mid;else if (a[left] > a[right]) return left;else return mid;}else //a[left] > a[mid]{if (a[mid] > a[right]) return mid;else if (a[right] > a[left]) return left;else return right;}
}
//hoare版本
int Partition1(int* a, int left, int right)
{//将中位数与数组的第一个元素(基准值)进行交换int midi = GetMidIndex(a, left, right);Swap(&a[left], &a[midi]);int keyi = left;while (left < right){//右边找小while (left < right && a[right] >= a[keyi]){right--;}//左边找大while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);return left;
}

后面会更新快排的非递归版本……可到数据结构专栏查看🥰
更多数据结构与算法系列文章👉😉==> 【传送门】

相关文章:

【数据结构与算法篇】手撕八大排序算法之交换排序

​&#x1f47b;内容专栏&#xff1a; 《数据结构与算法篇》 &#x1f428;本文概括&#xff1a;常见交换排序包括冒泡排序与快速排序&#xff0c;本篇讲述冒泡排序与快速排序的思想及实现、复杂度分析。 &#x1f43c;本文作者&#xff1a; 花 蝶 &#x1f438;发布时间&#…...

ArcGIS Pro实践技术应用、制图、空间分析、影像分析、三维建模、空间统计分析与建模、python融合

GIS是利用电子计算机及其外部设备&#xff0c;采集、存储、分析和描述整个或部分地球表面与空间信息系统。简单地讲&#xff0c;它是在一定的地域内&#xff0c;将地理空间信息和 一些与该地域地理信息相关的属性信息结合起来&#xff0c;达到对地理和属性信息的综合管理。GIS的…...

uniapp 项目实践总结(一)uniapp 框架知识总结

导语&#xff1a;最近开发了一个基于 uniapp 框架的项目&#xff0c;有一些感触和体会&#xff0c;所以想记录以下一些技术和经验&#xff0c;在这里做一个系列总结&#xff0c;算是对自己做一个交代吧。 目录 简介全局文件全局组件常用 API条件编译插件开发 简介 uniapp 是…...

Oracle查看与修改隐藏参数

Oracle查看与修改隐藏参数 查看隐藏参数修改隐藏参数 查看隐藏参数 查看数据库中所有的隐藏参数&#xff1a; SELECT a.ksppinm "Parameter", b.KSPPSTDF "Default Value",b.ksppstvl "Session Value", c.ksppstvl "Instance Value"…...

基于MQTT协议的物联网网关实现远程数据采集及监控

在数字化时代的浪潮中&#xff0c;工业界正面临着前所未有的变革与机遇。而在这场变革中&#xff0c;基于MQTT协议的物联网网关崭露头角&#xff0c;成为连接工业设备、实现远程数据采集与监控的利器。其中&#xff0c;HiWoo Box作为一款出色的工业边缘网关&#xff0c;引领着这…...

服务内部错误: stderr: bash: docker-compose: 未找到命令

报错描述 1Panel在应用商店安装软件失败&#xff0c;重建或者重启报错"服务内部错误: stderr: bash: docker-compose: 未找到命令" 执行命令"docker-compose --version"结果为"Docker Compose version v2.17.2"&#xff0c;说明docker-compose已…...

自然语言处理(六):词的相似性和类比任务

词的相似性和类比任务 在前面的章节中&#xff0c;我们在一个小的数据集上训练了一个word2vec模型&#xff0c;并使用它为一个输入词寻找语义相似的词。实际上&#xff0c;在大型语料库上预先训练的词向量可以应用于下游的自然语言处理任务&#xff0c;为了直观地演示大型语料…...

安防监控视频平台EasyCVR视频汇聚平台定制项目增加AI智能算法详细介绍

安防视频集中存储EasyCVR视频汇聚平台&#xff0c;可支持海量视频的轻量化接入与汇聚管理。平台能提供视频存储磁盘阵列、视频监控直播、视频轮播、视频录像、云存储、回放与检索、智能告警、服务器集群、语音对讲、云台控制、电子地图、平台级联、H.265自动转码等功能。为了便…...

VB个人邮件处理系统设计与实现

简述 当今世界电子邮件已经是网络生活中不可或缺的,相信每个认知网络的人都会有一个或多个自己的电子邮箱,人们通过电子邮件进行通信和交流,许多商家和组织机构也用电子邮件进行各种商业活动和业务联系,毫无疑问,电子邮件已经逐渐开始取代普通的信件,成为为主流的信件交流…...

第一章辩证唯物论,考点七思维导图

逻辑框架 考点七思维导图&#xff1a;...

Python入门教程 - 基本函数(四)

目录 一、什么是函数 二、自定义函数并使用它 一、什么是函数 前面我们学习了像input()、print()、type()等等&#xff0c;他们都是函数。这些其实是由Python内部帮我们定义好的。我们直接用就可以了。 关于函数&#xff0c;除了用内部定义好的&#xff0c;我们也可以自己定…...

[PyTorch][chapter 53][Auto Encoder 实战]

前言&#xff1a; 结合手写数字识别的例子&#xff0c;实现以下AutoEncoder ae.py: 实现autoEncoder 网络 main.py: 加载手写数字数据集&#xff0c;以及训练&#xff0c;验证&#xff0c;测试网络。 左图&#xff1a;原图像 右图&#xff1a;重构图像 ----main----- 每轮训…...

Springboot常用方法参数注解及示例

文章目录 Springboot常用方法参数注解及示例一、RequestParam&#xff1a; 从URL查询参数中提取数据。二、PathVariable&#xff1a; 从URL路径中提取数据。三、RequestBody&#xff1a; 从请求体中提取数据&#xff0c;并映射到对象。四、RequestHeader&#xff1a; 从请求头中…...

基于java+springboot+vue的交流互动系统-lw

​ 系统介绍&#xff1a; 随着现在网络的快速发展&#xff0c;网上管理系统也逐渐快速发展起来&#xff0c;网上管理模式很快融入到了许多企业的之中&#xff0c;随之就产生了“交流互动系统”&#xff0c;这样就让交流互动系统更加方便简单。 对于本交流互动系统的设计来说&a…...

使用candump+grep查看CAN报文

在Linux系统中观察看CAN报文&#xff0c;我们一般使用candump&#xff0c;但是有时候会发现总线上CAN报文太多&#xff0c;例如开启了好几个PDO&#xff0c;这就导致想看的报文被夹杂到报文的海洋里&#xff0c;然后再去找&#xff0c;非常麻烦。 candump也提供了只观察某个报…...

Vue中el-table表格的拖拽排序

el-table实现拖拽 element-ui 表格没有拖拽排序的功能&#xff0c;只能使用sortable.js插件实现拖拽排序&#xff0c;当然也可以应用到其他的组件里面&#xff0c;用法类似&#xff0c;这里只说表格。 实现步骤&#xff1a; 1、安装sortable.js npm install sortablejs --s…...

配置环境变量的作用

配置环境变量的作用 一般运行过程&#xff1a;寻找QQ.exe所在的目录&#xff0c;输入QQ.exe配置环境变量&#xff1a;把QQ所在的路径配给操作系统Path&#xff0c; 在任何路径下都能运行QQ.exe 举例&#xff1a; 定义变量&#xff1a;SCALA_HOME SCALA_HOME、JAVA_HOME 等这…...

Mysql的page,索引,Explain Type等基本常识

Mysql的基本问题 Mysql 为什么建议使用自增id&#xff1f; 因为id&#xff08;主键&#xff09;是自增的话&#xff0c;那么在有序的保存用户数据到页中的时候&#xff0c;可以天然的保存&#xff0c;并且是在聚集索引&#xff08;id&#xff09;中的叶子节点可以很好的减少插…...

【业务功能篇95】web中的重定向与转发

web接口的返回值&#xff1a; 转发&#xff1a; return “/reg” 跳转到reg的html页面 重定向 return “redirect:/login.html” 重定向重新发起请求路径是 login.html 比如我们写的接口 requestmap("/login.html")的的这个请求地址&#xff0c;重新请求 …...

IP对讲终端SV-6005带一路2×15W或1*30W立体声做广播使用

IP对讲终端SV-6005双按键是一款采用了ARMDSP架构&#xff0c;接收网络音频流&#xff0c;实时解码播放&#xff1b;配置了麦克风输入和扬声器输出&#xff0c;SV-6005带两路寻呼按键&#xff0c;可实现对讲、广播等功能&#xff0c;作为网络数字广播的播放终端&#xff0c;主要…...

ES6 新特性

&#x1f384;欢迎来到边境矢梦的csdn博文&#x1f384; &#x1f384;本文主要梳理前端技术的JavaScript的知识点ES6 新特性文件上传下载&#x1f384; &#x1f308;我是边境矢梦&#xff0c;一个正在为秋招和算法竞赛做准备的学生&#x1f308; &#x1f386;喜欢的朋友可以…...

grafana用lark发告警python3接口

1.先在lark群聊里面创建机器人&#xff0c;并获取机器人链接。 2.后台运行下面python3脚本。 3.在grafana添加告警通道&#xff0c;设置告警。 # !/usr/bin/env python # _*_ coding: utf-8 _*_from flask import Flask, request,jsonify #import smtplib #from email.mime.te…...

Java 中数据结构HashSet的用法

Java HashSet HashSet 基于 HashMap 来实现的&#xff0c;是一个不允许有重复元素的集合。 HashSet 允许有 null 值。 HashSet 是无序的&#xff0c;即不会记录插入的顺序。 HashSet 不是线程安全的&#xff0c; 如果多个线程尝试同时修改 HashSet&#xff0c;则最终结果是…...

vue3下的密码输入框(antdesignvue)

参考:vue下的密码输入框 注意:这是个半成品,有些问题(input输入框加了文字间距letter-spaceing,会导致输入到第6位的时候会往后窜出来一个空白框、光标位置页会在数字前面),建议不采用下面这种方式,用另外的(画六个input框更方便) 效果预览 实现思路 制作6个小的正方…...

鸿鹄企业工程项目管理系统 Spring Cloud+Spring Boot+前后端分离构建工程项目管理系统源代码

鸿鹄工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离构建工程项目管理系统 1. 项目背景 一、随着公司的快速发展&#xff0c;企业人员和经营规模不断壮大。为了提高工程管理效率、减轻劳动强度、提高信息处理速度和准确性&#xff0c;公司对内部工程管…...

【爬虫】5.5 Selenium 爬取Ajax网页数据

目录 AJAX 简介 任务目标 创建Ajax网站 创建服务器程序 编写爬虫程序 AJAX 简介 AJAX&#xff08;Asynchronous JavaScript And XML&#xff0c;异步 JavaScript 及 XML&#xff09; Asynchronous 一种创建交互式、快速动态网页应用的网页开发技术通过在后台与服务器进行…...

thinkphp6 入门(3)--获取GET、POST请求的参数值

一、Request对象 thinkphp提供了Request对象&#xff0c;其可以 支持对全局输入变量的检测、获取和安全过滤 支持获取包括$_GET、$_POST、$_REQUEST、$_SERVER、$_SESSION、$_COOKIE、$_ENV等系统变量&#xff0c;以及文件上传信息 具体参考&#xff1a;https://www.kanclou…...

JSON简介

JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式。它使用简洁的文本表示来存储和传输结构化数据。JSON数据由键值对组成&#xff0c;用逗号分隔。键是字符串&#xff0c;值可以是字符串、数字、布尔值、数组、对象或者null 1、JSON的优点 …...

[Java]_[初级]_[以SAX流的方式高效读取XML大文件]

场景 XML文件作为默认utf8格式的文件&#xff0c;它的作用和JSON文件相当。比如可以做为简单的数据存储格式&#xff0c;配置文件&#xff0c;网站的sitemap.xml导航等。它比json强的一点是它还有样式描述文件dtd,可以实现让XML里的结构化数据显示表格样式。 <?xml versi…...

Visual Studio中平台和配置的概念

在 Visual Studio 中&#xff0c;“平台”&#xff08;Platform&#xff09;和 “配置”&#xff08;Configuration&#xff09;是用于管理项目构建和设置的两个关键概念。在 “解决方案配置管理器” 中设置和管理 平台&#xff08;Platform&#xff09;&#xff1a; 指项目构…...