当前位置: 首页 > news >正文

Netty核心原理(线程模型、核心API)与入门案例详解

Netty核心原理(线程模型、核心API)与入门案例详解

文章目录

  • Netty核心原理(线程模型、核心API)与入门案例详解
    • Netty 介绍
      • 原生 NIO 存在的问题
      • 概述
    • 线程模型
      • 线程模型基本介绍
      • 传统阻塞 I/O 服务模型
      • Reactor 模型
        • 单 Reactor 单线程
      • Netty线程模型
    • 核心API介绍
      • ChannelHandler及其实现类
      • ChannelPipeline
      • ChannelHandlerContext
      • ChannelOption
      • ChannelFuture
      • EventLoopGroup和实现类NioEventLoopGroup
      • ServerBootstrap和Bootstrap
      • Unpooled类
    • Netty入门案例
      • Netty服务端编写
      • Netty客户端编写
    • Netty异步模型
      • 基本介绍
      • Future 和Future-Listener
        • Future
        • Future-Listener 机制

Netty 介绍

原生 NIO 存在的问题

  1. NIO 的类库和 API 繁杂,使用麻烦:需要熟练掌握 Selector、ServerSocketChannel、SocketChannel、ByteBuffer等。
  2. 需要具备其他的额外技能:要熟悉 Java 多线程编程,因为 NIO 编程涉及到 Reactor 模式,你必须对多线程和网络编程非常熟悉,才能编写出高质量的 NIO 程序。
  3. 开发工作量和难度都非常大:例如客户端面临断连重连、网络闪断、半包读写、失败缓存、网络拥塞和异常流的处理等等。
  4. DK NIO 的 Bug:臭名昭著的 Epoll Bug,它会导致 Selector 空轮询,最终导致 CPU 100%。直到JDK 1.7版本该问题仍旧存在,没有被根本解决

在NIO中通过Selector的轮询当前是否有IO事件,根据JDK NIO api描述,Selector的select方法会一直阻塞,直到IO事件达到或超时,但是在Linux平台上这里有时会出现问题,在某些场景下select方法会直接返回,即使没有超时并且也没有IO事件到达,这就是著名的epoll bug,这是一个比较严重的bug,它会导致线程陷入死循环,会让CPU飙到100%,极大地影响系统的可靠性,到目前为止,JDK都没有完全解决这个问题。

概述

Netty 是由 JBOSS 提供的一个 Java 开源框架。Netty 提供异步的、基于事件驱动的网络应用程序框架,用以快速开发高性能、高可靠性的网络 IO 程序。 Netty 是一个基于 NIO 的网络编程框架,使用Netty 可以帮助你快速、简单的开发出一 个网络应用,相当于简化和流程化了 NIO 的开发过程。 作为当前最流行的 NIO 框架,Netty 在互联网领域、大数据分布式计算领域、游戏行业、 通信行业等获得了广泛的应用,知名的 Elasticsearch 、Dubbo 框架内部都采用了 Netty。

在这里插入图片描述

从图中就能看出 Netty 的强大之处:零拷贝、可拓展事件模型;支持 TCP、UDP、HTTP、WebSocket 等协议;提供安全传输、压缩、大文件传输、编解码支持等等。

具备如下优点

  1. 设计优雅,提供阻塞和非阻塞的 Socket;提供灵活可拓展的事件模型;提供高度可定制的线程模
    型。
  2. 具备更高的性能和更大的吞吐量,使用零拷贝技术最小化不必要的内存复制,减少资源的消耗。
  3. 提供安全传输特性。
  4. 支持多种主流协议;预置多种编解码功能,支持用户开发私有协议。

线程模型

线程模型基本介绍

不同的线程模式,对程序的性能有很大影响,在学习Netty线程模式之前,首先讲解下各个线程模式, 最后看看 Netty 线程模型有什么优越性。目前存在的线程模型有:

  • 传统阻塞 I/O 服务模型

  • Reactor 模型

    根据 Reactor 的数量和处理资源池线程的数量不同,有 3 种典型的实现

    • 单 Reactor 单线程
    • 单 Reactor 多线程
    • 主从 Reactor 多线程

传统阻塞 I/O 服务模型

采用阻塞 IO 模式获取输入的数据, 每个连接都需要独立的线程完成数据的输入 , 业务处理和数据返回工作。

在这里插入图片描述

存在问题

  1. 当并发数很大,就会创建大量的线程,占用很大系统资源
  2. 连接创建后,如果当前线程暂时没有数据可读,该线程会阻塞在 read 操作,造成线程资源浪费

Reactor 模型

Reactor 模式,通过一个或多个输入同时传递给服务处理器的模式 , 服务器端程序处理传入的多个请求,并将它们同步分派到相应的处理线程, 因此 Reactor 模式也叫 Dispatcher模式. Reactor 模式使用IO 复用监听事件, 收到事件后,分发给某个线程(进程), 这点就是网络服务器高并发处理关键.

单 Reactor 单线程

在这里插入图片描述

  • Selector是可以实现应用程序通过一个阻塞对象监听多路连接请求
  • Reactor 对象通过 Selector监控客户端请求事件,收到事件后通过 Dispatch 进行分发
  • 是建立连接请求事件,则由 Acceptor 通过 Accept 处理连接请求,然后创建一个 Handler 对象处理连接完成后的后续业务处理
  • Handler 会完成 Read→业务处理→Send 的完整业务流程

优点

优点:模型简单,没有多线程、进程通信、竞争的问题,全部都在一个线程中完成

缺点

  1. 性能问题: 只有一个线程,无法完全发挥多核 CPU 的性能。Handler 在处理某个连接上的业务时,整个进程无法处理其他连接事件,很容易导致性能瓶颈
  2. 可靠性问题: 线程意外终止或者进入死循环,会导致整个系统通信模块不可用,不能接收和处理外部消息,造成节点故障

单 Reactor多线程

在这里插入图片描述

  • Reactor 对象通过 selector 监控客户端请求事件, 收到事件后,通过 dispatch 进行分发
  • 如果建立连接请求, 则由 Acceptor 通过accept 处理连接请求
  • 如果不是连接请求,则由 reactor 分发调用连接对应的 handler 来处理
  • handler 只负责响应事件,不做具体的业务处理, 通过 read 读取数据后,会分发给后面的
  • worker 线程池的某个线程处理业务
  • worker 线程池会分配独立线程完成真正的业务,并将结果返回给 handler
  • handler 收到响应后,通过 send 将结果返回给 client

优点

可以充分的利用多核 cpu 的处理能力

缺点

多线程数据共享和访问比较复杂, reactor 处理所有的事件的监听和响应,在单线程运行, 在高并发场景容易出现性能瓶颈

主从 Reactor 多线程
在这里插入图片描述

  • Reactor 主线程 MainReactor 对象通过 select 监听客户端连接事件,收到事件后,通过Acceptor 处理客户端连接事件
  • 当 Acceptor 处理完客户端连接事件之后(与客户端建立好 Socket 连接),MainReactor 将连接分配给 SubReactor。(即:
  • MainReactor 只负责监听客户端连接请求,和客户端建立连接之后将连接交由 SubReactor 监听后面的 IO 事件。)
  • SubReactor 将连接加入到自己的连接队列进行监听,并创建 Handler 对各种事件进行处理
  • 当连接上有新事件发生的时候,SubReactor 就会调用对应的 Handler 处理
  • Handler 通过 read 从连接上读取请求数据,将请求数据分发给 Worker 线程池进行业务处理
  • Worker 线程池会分配独立线程来完成真正的业务处理,并将处理结果返回给 Handler。
  • Handler 通过 send 向客户端发送响应数据
  • 一个 MainReactor 可以对应多个 SubReactor,即一个 MainReactor 线程可以对应多个SubReactor 线程

优点

  1. MainReactor 线程与 SubReactor 线程的数据交互简单职责明确,MainReactor 线程只需要接收新连接,SubReactor 线程完成后续的业务处理
  2. MainReactor 线程与 SubReactor 线程的数据交互简单, MainReactor 线程只需要把新连接传给 SubReactor 线程,SubReactor 线程无需返回数据
  3. 多个 SubReactor 线程能够应对更高的并发请求

缺点

这种模式的缺点是编程复杂度较高。但是由于其优点明显,在许多项目中被广泛使用,包括Nginx、Memcached、Netty 等。这种模式也被叫做服务器的 1+M+N 线程模式,即使用该模式开发的服务器包含一个(或多个,1 只是表示相对较少)连接建立线程+M 个 IO 线程+N 个业务处理线程。这是业界成熟的服务器程序设计模式。

Netty线程模型

Netty 的设计主要基于主从 Reactor 多线程模式,并做了一定的改进。

简单版Netty模型

在这里插入图片描述

  • BossGroup 线程维护 Selector,ServerSocketChannel 注册到这个 Selector 上,只关注连接建立请求事件(主 Reactor)
  • 当接收到来自客户端的连接建立请求事件的时候,通过 ServerSocketChannel.accept 方法获得对应的 SocketChannel,并封装成 NioSocketChannel 注册到 WorkerGroup 线程中的Selector,每个 Selector 运行在一个线程中(从 Reactor)
  • 当 WorkerGroup 线程中的 Selector 监听到自己感兴趣的 IO 事件后,就调用 Handler 进行处理

进阶版Netty模型
在这里插入图片描述

  • 有两组线程池:BossGroup 和 WorkerGroup,BossGroup 中的线程专门负责和客户端建立连接,WorkerGroup 中的线程专门负责处理连接上的读写
  • BossGroup 和 WorkerGroup 含有多个不断循环的执行事件处理的线程,每个线程都包含一个 Selector,用于监听注册在其上的 Channel
  • 每个 BossGroup 中的线程循环执行以下三个步骤
    • 轮训注册在其上的 ServerSocketChannel 的 accept 事件(OP_ACCEPT 事件)
    • 处理 accept 事件,与客户端建立连接,生成一个 NioSocketChannel,并将其注册到WorkerGroup 中某个线程上的 Selector 上
    • 再去以此循环处理任务队列中的下一个事件
  • 每个 WorkerGroup 中的线程循环执行以下三个步骤
    • 轮训注册在其上的 NioSocketChannel 的 read/write 事件(OP_READ/OP_WRITE 事件)
    • 在对应的 NioSocketChannel 上处理 read/write 事件
    • 再去以此循环处理任务队列中的下一个事件

详细版Netty模型

在这里插入图片描述

  • Netty 抽象出两组线程池:BossGroup 和 WorkerGroup,也可以叫做BossNioEventLoopGroup 和 WorkerNioEventLoopGroup。每个线程池中都有NioEventLoop 线程。BossGroup 中的线程专门负责和客户端建立连接,WorkerGroup 中的线程专门负责处理连接上的读写。BossGroup 和 WorkerGroup 的类型都是NioEventLoopGroup

  • NioEventLoopGroup 相当于一个事件循环组,这个组中含有多个事件循环,每个事件循环就是一个 NioEventLoop

  • NioEventLoop 表示一个不断循环的执行事件处理的线程,每个 NioEventLoop 都包含一个Selector,用于监听注册在其上的 Socket 网络连接(Channel)

  • NioEventLoopGroup 可以含有多个线程,即可以含有多个 NioEventLoop

  • 每个 BossNioEventLoop 中循环执行以下三个步骤

    • select:轮训注册在其上的 ServerSocketChannel 的 accept 事件(OP_ACCEPT 事件)
    • processSelectedKeys:处理 accept 事件,与客户端建立连接,生成一个NioSocketChannel,并将其注册到某个 WorkerNioEventLoop 上的 Selector 上
    • runAllTasks:再去以此循环处理任务队列中的其他任务
  • 每个 WorkerNioEventLoop 中循环执行以下三个步骤

    • select:轮训注册在其上的 NioSocketChannel 的 read/write 事件(OP_READ/OP_WRITE 事件)
    • processSelectedKeys:在对应的 NioSocketChannel 上处理 read/write 事件
    • runAllTasks:再去以此循环处理任务队列中的其他任务
  • 在以上两个processSelectedKeys步骤中,会使用 Pipeline(管道),Pipeline 中引用了Channel,即通过 Pipeline 可以获取到对应的 Channel,Pipeline 中维护了很多的处理器(拦截处理器、过滤处理器、自定义处理器等)。

核心API介绍

ChannelHandler及其实现类

ChannelHandler 接口定义了许多事件处理的方法,我们可以通过重写这些方法去实现具 体的业务逻辑。API 关系如下图所示

在这里插入图片描述

Netty开发中需要自定义一个 Handler 类去实现 ChannelHandle接口或其子接口或其实现类,然后通过重写相应方法实现业务逻辑,我们接下来看看一般都需要重写哪些方法

  • public void channelActive(ChannelHandlerContext ctx),通道就绪事件
  • public void channelRead(ChannelHandlerContext ctx, Object msg),通道读取数据事件
  • public void channelReadComplete(ChannelHandlerContext ctx) ,数据读取完毕事件
  • public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause),通道发生异常事件

ChannelPipeline

ChannelPipeline 是一个 Handler 的集合,它负责处理和拦截 inbound 或者 outbound 的事件和操作,相当于一个贯穿 Netty 的责任链.

在这里插入图片描述

如果客户端和服务器的Handler是一样的,消息从客户端到服务端或者反过来,每个Inbound类型或Outbound类型的Handler只会经过一次,混合类型的Handler(实现了Inbound和Outbound的Handler)会经过两次。准确的说ChannelPipeline中是一个ChannelHandlerContext,每个上下文对象中有ChannelHandler. InboundHandler是按照Pipleline的加载顺序的顺序执行, OutboundHandler是按照Pipeline的加载顺序,逆序执行

ChannelHandlerContext

这 是 事 件 处 理 器 上 下 文 对 象 , Pipeline 链 中 的 实 际 处 理 节 点 。 每 个 处 理 节 点ChannelHandlerContext 中 包 含 一 个 具 体 的 事 件 处 理 器 ChannelHandler ,同时ChannelHandlerContext 中也绑定了对应的 ChannelPipeline和 Channel 的信息,方便对
ChannelHandler 进行调用。常用方法如下所示

  • ChannelFuture close(),关闭通道
  • ChannelOutboundInvoker flush(),刷新
  • ChannelFuture writeAndFlush(Object msg) , 将 数 据 写 到 ChannelPipeline 中 当 前ChannelHandler 的下一个 ChannelHandler 开始处理(出站)

ChannelOption

Netty 在创建 Channel 实例后,一般都需要设置 ChannelOption 参数ChannelOption 是 Socket 的标准参数,而非 Netty 独创的。常用的参数配置有:

  • ChannelOption.SO_BACKLOG
    对应 TCP/IP 协议 listen 函数中的 backlog 参数,用来初始化服务器可连接队列大小服务端处理客户端连接请求是顺序处理的,所以同一时间只能处理一个客户端连接。多个客户端来的时候,服务端将不能处理的客户端连接请求放在队列中等待处理,backlog 参数指定 了队列的大小。

  • ChannelOption.SO_KEEPALIVE

    一直保持连接活动状态。该参数用于设置TCP连接,当设置该选项以后,连接会测试链接的状态,这个选项用于可能长时间没有数据交流的连接。当设置该选项以后,如果在两小时内没有数据的通信时,TCP会自动发送一个活动探测数据报文。

ChannelFuture

表示 Channel 中异步 I/O 操作的结果,在 Netty 中所有的 I/O 操作都是异步的,I/O 的调用会直接返回,调用者并不能立刻获得结果,但是可以通过 ChannelFuture 来获取 I/O 操作 的处理状态。常用方法如下所示:

常用方法如下所示:

  • Channel channel(),返回当前正在进行 IO 操作的通道
  • ChannelFuture sync(),等待异步操作执行完毕,将异步改为同步

EventLoopGroup和实现类NioEventLoopGroup

EventLoopGroup 是一组 EventLoop 的抽象,Netty 为了更好的利用多核 CPU 资源,一般会有多个EventLoop 同时工作,每个 EventLoop 维护着一个 Selector 实例。

EventLoopGroup 提供 next 接口,可以从组里面按照一定规则获取其中一个 EventLoop 来处理任务。在 Netty 服务器端编程中,我们一般都需要提供两个 EventLoopGroup,例如: BossEventLoopGroupWorkerEventLoopGroup

通常一个服务端口即一个 ServerSocketChannel对应一个Selector 和一个EventLoop线程BossEventLoop 负责接收客户端的连接并将SocketChannel 交给 WorkerEventLoopGroup 来进 行 IO 处理,如下图所示:

在这里插入图片描述

BossEventLoopGroup 通常是一个单线程的 EventLoop,EventLoop 维护着一个注册了ServerSocketChannel 的 Selector 实例,BossEventLoop 不断轮询 Selector 将连接事件分离出来, 通常是 OP_ACCEPT 事件,然后将接收到的 SocketChannel 交给 WorkerEventLoopGroup,WorkerEventLoopGroup 会由 next 选择其中一个 EventLoopGroup 来将这个 SocketChannel 注册到其维护的 Selector 并对其后续的 IO 事件进行处理。

一般情况下我们都是用实现类NioEventLoopGroup.

常用方法如下所示:

  • public NioEventLoopGroup(),构造方法,创建线程组
  • public Future<?> shutdownGracefully(),断开连接,关闭线程

ServerBootstrap和Bootstrap

ServerBootstrap 是 Netty 中的服务器端启动助手,通过它可以完成服务器端的各种配置;Bootstrap 是 Netty 中的客户端启动助手,通过它可以完成客户端的各种配置。常用方法如下 所示:

  • public ServerBootstrap group(EventLoopGroup parentGroup, EventLoopGroup childGroup), 该方法用于服务器端,用来设置两个 EventLoop
  • public B group(EventLoopGroup group) ,该方法用于客户端,用来设置一个 EventLoop
  • public B channel(Class<? extends C> channelClass),该方法用来设置一个服务器端的通道 实现
  • public B option(ChannelOption option, T value),用来给 ServerChannel 添加配置
  • public ServerBootstrap childOption(ChannelOption childOption, T value),用来给接收到的通道添加配置
  • public ServerBootstrap childHandler(ChannelHandler childHandler),该方法用来设置业务 处理类(自定义的 handler)
  • public ChannelFuture bind(int inetPort) ,该方法用于服务器端,用来设置占用的端口号
  • public ChannelFuture connect(String inetHost, int inetPort) ,该方法用于客户端,用来连接服务器端

Unpooled类

这是 Netty 提供的一个专门用来操作缓冲区的工具类,常用方法如下所示:

  • public static ByteBuf copiedBuffer(CharSequence string, Charset charset),通过给定的数据和字符编码返回一个 ByteBuf 对象(类似于 NIO 中的 ByteBuffer 对象)

Netty入门案例

Netty 是由 JBOSS 提供的一个 Java 开源框架,所以在使用得时候首先得导入Netty的maven坐标

<dependency><groupId>io.netty</groupId><artifactId>netty-all</artifactId><version>4.1.42.Final</version>
</dependency>

Netty服务端编写

服务端实现步骤

  1. 创建bossGroup线程组: 处理网络事件–连接事件
  2. 创建workerGroup线程组: 处理网络事件–读写事件
  3. 创建服务端启动助手
  4. 设置bossGroup线程组和workerGroup线程组
  5. 设置服务端通道实现为NIO
  6. 参数设置
  7. 创建一个通道初始化对象
  8. 向pipeline中添加自定义业务处理handler
  9. 启动服务端并绑定端口,同时将异步改为同步
  10. 关闭通道和关闭连接池

代码实现

import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;/*** Netty服务端*/
public class NettyServer {public static void main(String[] args) throws InterruptedException {//1. 创建bossGroup线程组: 处理网络事件--连接事件EventLoopGroup bossGroup = new NioEventLoopGroup(1);//2. 创建workerGroup线程组: 处理网络事件--读写事件 2*处理器线程数EventLoopGroup workerGroup = new NioEventLoopGroup();//3. 创建服务端启动助手ServerBootstrap serverBootstrap = new ServerBootstrap();//4. 设置bossGroup线程组和workerGroup线程组serverBootstrap.group(bossGroup, workerGroup).channel(NioServerSocketChannel.class) //5. 设置服务端通道实现为NIO.option(ChannelOption.SO_BACKLOG, 128)//6. 参数设置.childOption(ChannelOption.SO_KEEPALIVE, Boolean.TRUE)//6. 参数设置.childHandler(new ChannelInitializer<SocketChannel>() { //7. 创建一个通道初始化对象@Overrideprotected void initChannel(SocketChannel ch) throws Exception {//8. 向pipeline中添加自定义业务处理handlerch.pipeline().addLast(new NettyServerHandler());}});//9. 启动服务端并绑定端口,同时将异步改为同步ChannelFuture future = serverBootstrap.bind(9999);future.addListener(new ChannelFutureListener() {@Overridepublic void operationComplete(ChannelFuture future) throws Exception {if (future.isSuccess()) {System.out.println("端口绑定成功!");} else {System.out.println("端口绑定失败!");}}});System.out.println("服务端启动成功.");//10. 关闭通道(并不是真正意义上关闭,而是监听通道关闭的状态)和关闭连接池future.channel().closeFuture().sync();bossGroup.shutdownGracefully();workerGroup.shutdownGracefully();}
}

自定义服务端handle

import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandler;
import io.netty.util.CharsetUtil;/*** 自定义处理Handler*/
public class NettyServerHandler implements ChannelInboundHandler {/*** 通道读取事件** @param ctx* @param msg* @throws Exception*/@Overridepublic void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {ByteBuf byteBuf = (ByteBuf) msg;System.out.println("客户端发送过来的消息:" + byteBuf.toString(CharsetUtil.UTF_8));}/*** 通道读取完毕事件** @param ctx* @throws Exception*/@Overridepublic void channelReadComplete(ChannelHandlerContext ctx) throws Exception {ctx.writeAndFlush(Unpooled.copiedBuffer("你好.我是Netty服务端",CharsetUtil.UTF_8));//消息出站}/*** 通道异常事件** @param ctx* @param cause* @throws Exception*/@Overridepublic void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {cause.printStackTrace();ctx.close();}@Overridepublic void channelRegistered(ChannelHandlerContext ctx) throws Exception {}@Overridepublic void channelUnregistered(ChannelHandlerContext ctx) throws Exception {}@Overridepublic void channelActive(ChannelHandlerContext ctx) throws Exception {}@Overridepublic void channelInactive(ChannelHandlerContext ctx) throws Exception {}@Overridepublic void userEventTriggered(ChannelHandlerContext ctx, Object evt) throws Exception {}@Overridepublic void channelWritabilityChanged(ChannelHandlerContext ctx) throws Exception {}@Overridepublic void handlerAdded(ChannelHandlerContext ctx) throws Exception {}@Overridepublic void handlerRemoved(ChannelHandlerContext ctx) throws Exception {}
}

Netty客户端编写

客户端实现步骤

  1. 创建线程组
  2. 创建客户端启动助手
  3. 设置客户端通道实现为NIO
  4. 创建一个通道初始化对象
  5. 向pipeline中添加自定义业务处理handler
  6. 启动客户端,等待连接服务端,同时将异步改为同步
  7. 关闭通道和关闭连接池

代码实现

import io.netty.bootstrap.Bootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;/*** 客户端*/
public class NettyClient {public static void main(String[] args) throws InterruptedException {//1. 创建线程组EventLoopGroup group = new NioEventLoopGroup();//2. 创建客户端启动助手Bootstrap bootstrap = new Bootstrap();//3. 设置线程组bootstrap.group(group).channel(NioSocketChannel.class)//4. 设置客户端通道实现为NIO.handler(new ChannelInitializer<SocketChannel>() { //5. 创建一个通道初始化对象@Overrideprotected void initChannel(SocketChannel ch) throws Exception {//6. 向pipeline中添加自定义业务处理handlerch.pipeline().addLast(new NettyClientHandler());}});//7. 启动客户端,等待连接服务端,同时将异步改为同步ChannelFuture channelFuture = bootstrap.connect("127.0.0.1", 9999).sync();//8. 关闭通道和关闭连接池channelFuture.channel().closeFuture().sync();group.shutdownGracefully();}
}

自定义客户端handle

import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelFutureListener;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandler;
import io.netty.util.CharsetUtil;/*** 客户端处理类*/
public class NettyClientHandler implements ChannelInboundHandler {/*** 通道就绪事件** @param ctx* @throws Exception*/@Overridepublic void channelActive(ChannelHandlerContext ctx) throws Exception {ChannelFuture future = ctx.writeAndFlush(Unpooled.copiedBuffer("你好呀.我是Netty客户端",CharsetUtil.UTF_8));future.addListener(new ChannelFutureListener() {@Overridepublic void operationComplete(ChannelFuture future) throws Exception {if (future.isSuccess()) {System.out.println("数据发送成功!");} else {System.out.println("数据发送失败!");}}});}/*** 通道读就绪事件** @param ctx* @param msg* @throws Exception*/@Overridepublic void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {ByteBuf byteBuf = (ByteBuf) msg;System.out.println("服务端发送的消息:" + byteBuf.toString(CharsetUtil.UTF_8));}@Overridepublic void channelRegistered(ChannelHandlerContext ctx) throws Exception {}@Overridepublic void channelUnregistered(ChannelHandlerContext ctx) throws Exception {}@Overridepublic void channelInactive(ChannelHandlerContext ctx) throws Exception {}@Overridepublic void channelReadComplete(ChannelHandlerContext ctx) throws Exception {}@Overridepublic void userEventTriggered(ChannelHandlerContext ctx, Object evt) throws Exception {}@Overridepublic void channelWritabilityChanged(ChannelHandlerContext ctx) throws Exception {}@Overridepublic void handlerAdded(ChannelHandlerContext ctx) throws Exception {}@Overridepublic void handlerRemoved(ChannelHandlerContext ctx) throws Exception {}@Overridepublic void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {}
}

Netty异步模型

基本介绍

异步的概念和同步相对。当一个异步过程调用发出后,调用者不能立刻得到结果。实际处理这个调用的组件在完成后,通过状态、通知和回调来通知调用者。

在这里插入图片描述

Netty 中的 I/O 操作是异步的,包括 Bind、Write、Connect 等操作会简单的返回一个ChannelFuture。调用者并不能立刻获得结果,而是通过 Future-Listener 机制,用户可以方便的主动获取或者通过通知机制获得IO 操作结果. Netty 的异步模型是建立在 future 和 callback 的之上的。callback 就是回调。重点说 Future,它的核心思想是:假设一个方法 fun,计算过程可能非常耗时,等待 fun 返回显然不合适。那么可以在调用 fun 的时候,立马返回一个 Future,后续可以通过 Future 去监控方法 fun 的处理过程(即 : Future-Listener 机制)

Future 和Future-Listener

Future

表示异步的执行结果, 可以通过它提供的方法来检测执行是否完成,ChannelFuture 是他的一个子接口. ChannelFuture 是一个接口 ,可以添加监听器,当监听的事件发生时,就会通知到监听器

当 Future 对象刚刚创建时,处于非完成状态,调用者可以通过返回的 ChannelFuture 来获取操作执行的状态, 注册监听函数来执行完成后的操作。

常用方法有

  • sync 方法, 阻塞等待程序结果反回
  • isDone 方法来判断当前操作是否完成;
  • isSuccess 方法来判断已完成的当前操作是否成功;
  • getCause 方法来获取已完成的当前操作失败的原因;
  • isCancelled 方法来判断已完成的当前操作是否被取消;
  • addListener 方法来注册监听器,当操作已完成(isDone 方法返回完成),将会通知指定的监听器;如果Future 对象已完成,则通知指定的监听器

Future-Listener 机制

给Future添加监听器,监听操作结果

代码实现

服务端异步接收连接

        //9. 启动服务端并绑定端口, 异步接收连接ChannelFuture future = serverBootstrap.bind(9999);future.addListener(new ChannelFutureListener() {@Overridepublic void operationComplete(ChannelFuture future) throws Exception {if (future.isSuccess()) {System.out.println("端口绑定成功!");} else {System.out.println("端口绑定失败!");}}});

客户端异步写数据

ChannelFuture future = ctx.writeAndFlush(Unpooled.copiedBuffer("你好呀.我是Netty客户端",CharsetUtil.UTF_8));future.addListener(new ChannelFutureListener() {@Overridepublic void operationComplete(ChannelFuture future) throws Exception {if (future.isSuccess()) {System.out.println("数据发送成功!");} else {System.out.println("数据发送失败!");}}});

相关文章:

Netty核心原理(线程模型、核心API)与入门案例详解

Netty核心原理&#xff08;线程模型、核心API&#xff09;与入门案例详解 文章目录Netty核心原理&#xff08;线程模型、核心API&#xff09;与入门案例详解Netty 介绍原生 NIO 存在的问题概述线程模型线程模型基本介绍传统阻塞 I/O 服务模型Reactor 模型单 Reactor 单线程Nett…...

【 java 8】Lambda 表达式

&#x1f4cb; 个人简介 &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是阿牛&#xff0c;全栈领域优质创作者。&#x1f61c;&#x1f4dd; 个人主页&#xff1a;馆主阿牛&#x1f525;&#x1f389; 支持我&#xff1a;点赞&#x1f44d;收藏⭐️留言&#x1f4d…...

改进YOLO系列 | 谷歌团队 | CondConv:用于高效推理的条件参数化卷积

CondConv:用于高效推理的条件参数化卷积 论文地址:https://arxiv.org/pdf/1904.04971.pdf 代码地址:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/condconv 卷积层是现代深度神经网络的基本构建模块之一。其中一个基本假设是,卷积核应该对数…...

SQL高级 --优化

一、SQL查询的解析 关联查询过多索引失效&#xff08;单值、符合&#xff09; 二、mysql explain使用简介 1、关于id的说明&#xff1a; 2 、select_type 常见和常用的值有如下几种&#xff1a; 分别用来表示查询的类型&#xff0c;主要是用于区别普通查询、联合查询、子…...

【C++】空间配置器

空间配置器&#xff0c;听起来高大上&#xff0c;那它到底是什么东西呢&#xff1f; 1.什么是空间配置器&#xff1f; 空间配置器是STL源码中实现的一个小灶&#xff0c;用来应对STL容器频繁申请小块内存空间的问题。他算是一个小型的内存池&#xff0c;以提升STL容器在空间申…...

nginx的介绍及源码安装

文章目录前言一、nginx介绍二、nginx应用场合三、nginx的源码安装过程1.下载源码包2.安装依赖性-安装nginx-创建软连接-启动服务-关闭服务3.创建nginx服务启动脚本4.本实验---纯代码过程前言 高可用&#xff1a;高可用(High availability,缩写为 HA),是指系统无中断地执行其功…...

通过openssl生成pfx证书

通过centos7上自带的openssl工具来生成。首先创建一个pfxcert目录。然后进入此目录。 1.生成.key文件&#xff08;内含被加密后的私钥&#xff09;&#xff0c;要求输入一个自定义的密码 [rootlocalhost cert]# openssl genrsa -des3 -out server.key 2048 Generating RSA priv…...

华为OD机试真题Python实现【敏感字段加密】真题+解题思路+代码(20222023)

敏感字段加密 题目 给定一个由多个命令字组成的命令字符串; 字符串长度小于等于127字节,只包含大小写字母,数字,下划线和偶数个双引号命令字之间以一个或多个下划线_进行分割可以通过两个双引号""来标识包含下划线_的命令字或空命令字(仅包含两个双引号的命令字…...

我的 System Verilog 学习记录(1)

引言 技多不压身&#xff0c;准备开始学一些 System Verilog 的东西&#xff0c;充实一下自己&#xff0c;这个专栏的博客就记录学习、找资源的一个过程&#xff0c;希望可以给后来者一些借鉴吧&#xff0c;IC找工作的都加把油&#xff01; 本文是准备先简单介绍一下环境搭建…...

金三银四,我不允许你们不知道这些软件测试面试题

01、您所熟悉的测试用例设计方法都有哪些&#xff1f;请分别以具体的例子来说明这些方法在测试用例设计工作中的应用。 答&#xff1a;有黑盒和白盒两种测试种类&#xff0c;黑盒有等价类划分法&#xff0c;边界分析法&#xff0c;因果图法和错误猜测法。白盒有逻辑覆盖法&…...

【UnityEditor】Unity将Multiple Sprite分割成多张png小图

如题&#xff0c;代码如下 using UnityEngine; using UnityEditor; using System.IO;public class SplitTexture {[MenuItem("ExtraTools/SplitTexture")]static void DoSplitTexture(){// 获取所选图片Texture2D selectedImg Selection.activeObject as Texture2D…...

独立搭建 handle server

本节主要介绍,如何搭建一个与 GHR隔离的 handle sever,不与外界有任何连通。 下载文件 访问地址下载最新版:http://www.handle.net/download_hnr.html 这里以 9.3.0 版本作为讲解 解压服务端,解压客户端 # 解压 tar -xzvf handle-9.3.0-distribution.tar.gz# 到目录下 …...

记一次KindEditor表格修改无效问题

项目说明 项目是由UmiJS创建的(ReactAnt Design4.2)&#xff0c;项目需求是富文本编辑器录入多样内容&#xff0c;可供查看。 通过各方探索以及客户的沟通&#xff0c;选定了KindEditor编辑器&#xff0c;通过iframe嵌入。但仍有很多不符合要求的地方&#xff0c;所以要进行很…...

一种图片展示的完美方案,图片展示,object-fill

通常一般的处理 <style>.img-container {width: 300px;height: 200px;background: #f60;}img {width: 100%;height: 100%;}</style> </head> <body><div class"img-container"><img src"./行道树.png" alt""&g…...

社科院杜兰金融管理硕士——考研初试成绩已出,关于分数“6线”你有了解吗

多地公布了2023考研初试成绩查询时间&#xff0c;部分省份今日就能查询到考研初试成绩&#xff0c;考研学子们此刻的心情应该是很忐忑吧&#xff0c;关于分数的“6线”你都知道有哪些吗&#xff1f;我们跟随社科院杜兰金融管理硕士项目一起去了解一下。1.国家线教育部依据硕士生…...

Talk | 清华大学交叉信息研究院助理教授杜韬:利用计算方法探究流固耦合

本期为TechBeat人工智能社区第474期线上Talk&#xff01; 北京时间2月15日(周三)20:00&#xff0c;清华大学交叉信息研究院助理教授——杜韬的Talk将准时在TechBeat人工智能社区开播&#xff01; 他与大家分享的主题是: “利用计算方法探究流固耦合”&#xff0c;届时将介绍流固…...

2023年,智能家居实体门店如何选品?

作者 | 启明 编辑 | 小沐 出品 | 智哪儿 zhinaer.cn2023年&#xff0c;是智能家居实体门店的机会与破局之年&#xff0c;作为智能家居实体门店老板&#xff0c;我们应该具备什么样的增长思维呢&#xff1f;上篇文章智哪儿谈了智能家居增长思维之流量思维 &#xff0c;这篇文章我…...

数据分析-深度学习 NLP Day2关键词提取案例

训练一个关键词提取算法需要以下几个步骤&#xff1a;1&#xff09;加载已有的文档数据集&#xff1b;2&#xff09;加载停用词表&#xff1b;3&#xff09;对数据集中的文档进行分词&#xff1b;4&#xff09;根据停用词表&#xff0c;过滤干扰词&#xff1b;5&#xff09;根据…...

LeetCode题解:938. 二叉搜索树的范围和,BFS,JavaScript,详细注释

原题链接&#xff1a; https://leetcode.cn/problems/range-sum-of-bst/ 解题思路&#xff1a; 对于二叉搜索树的任意节点&#xff0c;左子树的所有节点值都小于它的值&#xff0c;右子树的所有节点值都小于它的值。使用队列进行BFS搜索&#xff0c;如果当前节点的值小于low&…...

istio初步了解

istio 控制平面&#xff1a; Pilot&#xff1a;管理和配置部署在特定istio服务网格中的所有sidecar代理实例&#xff0c;管理sidecar代理之间的路由流量规则&#xff0c;并配置故障恢复功能&#xff0c;如超时、重试、熔断。 Citadel&#xff1a;istio中负责身份认证和证书管…...

【模板】用HTML编写邮件正文 | 各大邮箱几乎都会过滤css样式、js脚本等效果,如何用基础HTML编写?

用HTML编写邮件正文 文档 编码格式utf-8&#xff08;使用记事本或其他工具打开&#xff0c;在文件->另存为&#xff0c;编缉选择UTF-8格式&#xff09; 文档大小在15kb以内 样式 页面宽度&#xff1a;600px~800px 尽量用特殊元素以及元素属性代替样式 样式全部写为内联样式…...

华为云计算之双活容灾

双活&#xff08;HyperMetro&#xff09;本地双活&#xff1a;距离≤10km同城双活&#xff1a;距离&#xff1e;10km没有主备之分&#xff0c;只有本端数据中心和远端数据中心。当一个数据中心的设备故障或数据中心故障&#xff0c;业务会自动切换到另一个数据中心继续运行&…...

ASEMI高压MOS管ASE20N65SE体积,ASE20N65SE大小

编辑-Z ASEMI高压MOS管ASE20N65SE参数&#xff1a; 型号&#xff1a;ASE20N65SE 漏极-源极电压&#xff08;VDS&#xff09;&#xff1a;650V 栅源电压&#xff08;VGS&#xff09;&#xff1a;30V 漏极电流&#xff08;ID&#xff09;&#xff1a;20A 功耗&#xff08;P…...

resp连接redis服务器

修改redis的配置文件使得windows的图形界面客户端可以连接redis服务器 resp安装好以后&#xff0c;可以在linux端打开redis.conf中做以下操作&#xff0c;使得windows的图形界面客户端可以连接redis服务器 方法一&#xff1a; 1&#xff0c;在redis.conf文件中添加bind 在文件…...

七天实现一个分布式缓存

目录教程来源目的思路缓存淘汰(失效)算法&#xff1a;FIFO&#xff0c;LFU 和 LRUFIFO(First In First Out)LFU(Least Frequently Used)LRU(Least Recently Used)实现Lru查找功能删除新增/修改测试单机并发缓存主体结构 Group回调 GetterGroup 的定义Group 的 Get 方法HTTP 服务…...

电子招标采购系统源码功能清单

一、立项管理 1、招标立项申请 功能点&#xff1a;招标类项目立项申请入口&#xff0c;用户可以保存为草稿&#xff0c;提交。 2、非招标立项申请 功能点&#xff1a;非招标立项申请入口、用户可以保存为草稿、提交。 3、采购立项列表 功能点&#xff1a;对草稿进行编辑&#x…...

mysql数据库基础知识

一.mysql基本命令 1.基础常用命令 mysql -uroot -p密码;(也可以不带密码&#xff0c;之后输入) 本地登录 mysql -h 登录ip -p 端口(通常3306&#xff09; -uroot -p密码; 远程登录 desc 表名;查看表的各个字段的属性&#xff0c;以及自增键 mysqldump -u用户 -p 数据库名 >…...

CAN总线通信

CAN总线通信 CAN 是控制器局域网络&#xff08;Controller Area Network&#xff09; 的缩写&#xff0c;是 ISO 国际标准化的串行通信协议。 CAN是半双工通信 CAN总线特点 (1) 多主控制 在总线空闲时&#xff0c;所有的单元都可开始发送消息&#xff08;多主控制&#xf…...

MATLAB/Simulink 通信原理及仿真学习(二)

文章目录MATLAB/Simulink 通信原理及仿真学习&#xff08;二&#xff09;simulink仿真常用的Simulink库1. 信号源模块库2. 数序运算模块3. 信号输出模块库4.仿真搭建5.搭建自己的库6.S-函数编写MATLAB/Simulink 通信原理及仿真学习&#xff08;二&#xff09; simulink仿真 交…...

CentOS7 防火墙(firewall)的操作命令

CentOS7 防火墙&#xff08;firewall&#xff09;的操作命令 安装&#xff1a;yum install firewalld 1、firewalld的基本使用 启动&#xff1a; systemctl start firewalld 查看状态&#xff1a; systemctl status firewalld 禁用&#xff0c;禁止开机启动&#xff1a; s…...