当前位置: 首页 > news >正文

遗传算法决策变量降维的matlab实现

1.案例背景

1.1遗传算法概述

        遗传算法是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。它最初由美国Michigan大学的J. Holland教授提出,1967年, Holland 教授的学生 Bagley在其博士论文中首次提出了“遗传算法”一词,他发展了复制、交叉、变异,显性、倒位等遗传算子。Holland教授用遗传算法的思想对自然和人工自适应系统进行了研究,提出了遗传算法的基本定理——模式定理(schematheorem)。20世纪80年代,Holland教授实现了第一个基于遗传算法的机器学习系统,开创了遗传算法机器学习的新概念。
        遗传算法模拟了自然选择和遗传中发生的复制、交叉和变异等现象,从任一初始群体(population)出发,通过随机选择、交叉和变异操作,产生一群更适应环境的个体,使群体进化到搜索空间中越来越好的区域,这样一代一代地不断繁衍进化,最后收敛到一群最适应环境的个体(individual),求得问题的最优解。遗传算法的基本计算流程如图36-1所示。

        遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体组成。因此,第一步需要实现从表现型到基因型的映射,即编码工作。初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择个体,并借助于自然遗传学的遗传算子(genetic opera-tors)进行组合交叉和变异,产生出代表新的解集的种群。这个过程将导致种群像自然进化一样,后生代种群比前代更加适应环境,末代种群中的最优个体经过解码(decoding)可以作为问题近似最优解。
        遗传算法有三个基本操作:选择(selection)、交叉( crossover)和变异(mutation)。

        (1)选择
        选择的目的是为了从当前群体中选出优良的个体,使它们有机会作为父代为下一代繁衍子孙。根据各个个体的适应度值,按照一定的规则或方法从上一代群体中选择出一些优良的个体遗传到下一代种群中。选择的依据是适应性强的个体为下一代贡献一个或多个后代的概率大。
        (2)交叉
        通过交叉操作可以得到新一代个体,新个体组合了父辈个体的特性。将群体中的各个个体随机搭配成对,对每一个个体,以交叉概率交换它们之间的部分染色体。
        (3)变异
        对种群中的每一个个体,以变异概率改变某一个或多个基因座上的基因值为其他的等位基因。同生物界中一样,变异发生的概率很低,变异为新个体的产生提供了机会。

1.2自变量降维概述

        在现实生活中,实际问题很难用线性模型进行描述。神经网络的出现大大降低了模型建立的难度和工作量。只需将神经网络看成是一个黑箱子,根据输入与输出数据,神经网络依据相关的学习规则,便可以建立相应的数学模型。但是,当数学模型的输人自变量(即影响因素)很多,输人自变量之间不是相互独立时,利用神经网络容易出现过拟合现象,从而导致所建立的模型精度低,建模时间长等问题。因此,在建立模型之前,有必要对输入自变量进行优化选择,将冗余的一些自变量去掉,选择最能反映输入与输出关系的自变量参与建模。
        近年来,许多人对自变量压缩降维问题进行了深入的研究,取得了一定的成果。常用的变量压缩方法有多元回归与相关分析法、类逐步回归法、主成分分析法、独立成分分析法、主基底分析法、偏最小二乘法、遗传算法等,具体请参考本章文献。

1.3问题描述

        威斯康辛大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立-一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性的。

        建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积,光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。显然,这30个输人自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模

2模型建立

2.1设计思路

        利用遗传算法进行优化计算,需要将解空间映射到编码空间,每个编码对应问题的一个解(即为染色体或个体)。这里,将编码长度设计为30,染色体的每一位对应一个输入自变量,每一位的基因取值只能是“1”和“0”两种情况,如果染色体某一位值为“1”,表示该位对应的输人自变量参与最终的建模;反之,则表示“0”对应的输入自变量不作为最终的建模自变量。选取测试集数据均方误差的倒数作为遗传算法的适应度函数,这样,经过不断地迭代进化,最终筛选出最具代表性的输入自变量参与建模

2.2设计步骤

        根据上述设计思路,设计步骤主要包括以下几个部分,如图36-2所示。

 

        1.单BP模型建立
        为了比较遗传算法优化前后的预测效果,先利用全部的30个输入自变量建立BP模型。
        2.初始种群产生
        随机产生N个初始串结构数据,每个串结构数据即为一个个体,N个个体构成了一个种群。遗传算法以这N个串结构作为初始点开始迭代。如前文所述,这里每个个体的串结构数据只有“1”和“0”两种取值。
        3.适应度函数计算
        遗传算法中使用适应度这个概念来度量群体中各个个体在优化计算中可能达到、接近或有助于找到最优解的优良程度。适应度较高的个体遗传到下一代的概率就相对较大。度量个体适应度的函数称为适应度函数。这里,选取测试集数据误差平方和的倒数作为适应度函数:

        为了避免初始权值和阈值的随机性对适应度函数计算的影响,针对每一个体计算适应度函数值时,均用遗传算法对所建立的BP神经网络的权值和阈值进行优化,优化步骤如图36-3所示。


        4.选择操作
        选择操作选用比例选择算子,即个体被选中并遗传到下一代种群中的概率与该个体的适应度大小成正比,具体的操作过程如下:
        5.交叉操作
        对于输入自变量的压缩降维,交叉操作采用最简单的单点交叉算子,交叉算子原理如图36-4所示。具体操作过程为;

 

        ①.先对种群中的个体进行两两随机配对,本案例中产生的初始种群大小为20,故共有10对互相配对的个体组。

        ②.对每一对相互配对的个体,随机选取某一基因座之后的位置作为交叉点;
        ③.对每一对相互配对的个体,根据②中所确定的交叉点位置,相互交换两个个体的部分染色体,产生出两个新个体。

        6.变异操作
        对于输入自变量的压缩降维,变异操作采用最简单的单点变异算子,变异算子原理如图36-5所示。具体操作过程如下:

        ①随机产生变异点;
        ②根据①中的变异点位置,改变其对应的基因座上的基因值,由于本案例中的基因值只能取“1”和“0”,所以变异操作的结果即为“1”变为“0”或“0”变为“1”。
        对于BP神经网络初始权值和阈值的优化,变异选用非均匀变异算子,具体实现过程见第4节。

        7.优化结果输出
        经过一次次的迭代进化,当满足迭代终止条件时,输出的末代种群对应的便是问题的最优解或近优解,即筛选出的最具代表性的输人自变量组合。
        8.优化BP模型建立
        根据优化计算得到的结果,将选出的参与建模的输人自变量对应的训练集和测试集数据提取出来,利用BP神经网络重新建立模型进行仿真测试,从而进行结果分析。

3 遗传算法工具箱(GAOT)函数介绍

        遗传算法工具箱GAOT中含有丰富的遗传算法函数,利用遗传算法工具箱可以很方便地实现遗传算法优化计算。

        如果没有安装GAOT工具箱,可以参考这个博客进行下载:

matlab遗传算法gaot工具箱安装

        主函数代码如下:

%% 遗传算法的优化计算——输入自变量降维%% 清空环境变量
clear all
clc
warning off
%% 声明全局变量
global P_train T_train P_test T_test  mint maxt S s1
S = 30;
s1 = 50;
%% 导入数据
load data.mat
a = randperm(569);
Train = data(a(1:500),:);
Test = data(a(501:end),:);
% 训练数据
P_train = Train(:,3:end)';
T_train = Train(:,2)';
% 测试数据
P_test = Test(:,3:end)';
T_test = Test(:,2)';
% 显示实验条件
total_B = length(find(data(:,2) == 1));
total_M = length(find(data(:,2) == 2));
count_B = length(find(T_train == 1));
count_M = length(find(T_train == 2));
number_B = length(find(T_test == 1));
number_M = length(find(T_test == 2));
disp('实验条件为:');
disp(['病例总数:' num2str(569)...'  良性:' num2str(total_B)...'  恶性:' num2str(total_M)]);
disp(['训练集病例总数:' num2str(500)...'  良性:' num2str(count_B)...'  恶性:' num2str(count_M)]);
disp(['测试集病例总数:' num2str(69)...'  良性:' num2str(number_B)...'  恶性:' num2str(number_M)]);
%% 数据归一化
[P_train,minp,maxp,T_train,mint,maxt] = premnmx(P_train,T_train);
P_test = tramnmx(P_test,minp,maxp);
%% 创建单BP网络
t = cputime;
net_bp = newff(minmax(P_train),[s1,1],{'tansig','purelin'},'trainlm');
% 设置训练参数
net_bp.trainParam.epochs = 1000;
net_bp.trainParam.show = 10;
net_bp.trainParam.goal = 0.1;
net_bp.trainParam.lr = 0.1;
net_bp.trainParam.showwindow = 0;
%% 训练单BP网络
net_bp = train(net_bp,P_train,T_train);
%% 仿真测试单BP网络
tn_bp_sim = sim(net_bp,P_test);
% 反归一化
T_bp_sim = postmnmx(tn_bp_sim,mint,maxt);
e = cputime - t;
T_bp_sim(T_bp_sim > 1.5) = 2;
T_bp_sim(T_bp_sim < 1.5) = 1;
result_bp = [T_bp_sim' T_test'];
%% 结果显示(单BP网络)
number_B_sim = length(find(T_bp_sim == 1 & T_test == 1));
number_M_sim = length(find(T_bp_sim == 2 &T_test == 2));
disp('(1)BP网络的测试结果为:');
disp(['良性乳腺肿瘤确诊:' num2str(number_B_sim)...'  误诊:' num2str(number_B - number_B_sim)...'  确诊率p1 = ' num2str(number_B_sim/number_B*100) '%']);
disp(['恶性乳腺肿瘤确诊:' num2str(number_M_sim)...'  误诊:' num2str(number_M - number_M_sim)...'  确诊率p2 = ' num2str(number_M_sim/number_M*100) '%']);
disp(['建模时间为:' num2str(e) 's'] );
%% 遗传算法优化
popu = 20;  
bounds = ones(S,1)*[0,1];
% 产生初始种群
initPop = randint(popu,S,[0 1]);
% 计算初始种群适应度
initFit = zeros(popu,1);
for i = 1:size(initPop,1)initFit(i) = de_code(initPop(i,:));
end
initPop = [initPop initFit];
gen = 100; 
% 优化计算
[X,EndPop,BPop,Trace] = ga(bounds,'fitness',[],initPop,[1e-6 1 0],'maxGenTerm',...gen,'normGeomSelect',0.09,'simpleXover',2,'boundaryMutation',[2 gen 3]);
[m,n] = find(X == 1);
disp(['优化筛选后的输入自变量编号为:' num2str(n)]);
% 绘制适应度函数进化曲线
figure
plot(Trace(:,1),Trace(:,3),'r:')
hold on
plot(Trace(:,1),Trace(:,2),'b')
xlabel('进化代数')
ylabel('适应度函数')
title('适应度函数进化曲线')
legend('平均适应度函数','最佳适应度函数')
xlim([1 gen])
%% 新训练集/测试集数据提取
p_train = zeros(size(n,2),size(T_train,2));
p_test = zeros(size(n,2),size(T_test,2));
for i = 1:length(n)p_train(i,:) = P_train(n(i),:);p_test(i,:) = P_test(n(i),:);
end
t_train = T_train;
%% 创建优化BP网络
t = cputime;
net_ga = newff(minmax(p_train),[s1,1],{'tansig','purelin'},'trainlm');
% 训练参数设置
net_ga.trainParam.epochs = 1000;
net_ga.trainParam.show = 10;
net_ga.trainParam.goal = 0.1;
net_ga.trainParam.lr = 0.1;
net_ga.trainParam.showwindow = 0;
%% 训练优化BP网络
net_ga = train(net_ga,p_train,t_train);
%% 仿真测试优化BP网络
tn_ga_sim = sim(net_ga,p_test);
% 反归一化
T_ga_sim = postmnmx(tn_ga_sim,mint,maxt);
e = cputime - t;
T_ga_sim(T_ga_sim > 1.5) = 2;
T_ga_sim(T_ga_sim < 1.5) = 1;
result_ga = [T_ga_sim' T_test'];
%% 结果显示(优化BP网络)
number_b_sim = length(find(T_ga_sim == 1 & T_test == 1));
number_m_sim = length(find(T_ga_sim == 2 &T_test == 2));
disp('(2)优化BP网络的测试结果为:');
disp(['良性乳腺肿瘤确诊:' num2str(number_b_sim)...'  误诊:' num2str(number_B - number_b_sim)...'  确诊率p1=' num2str(number_b_sim/number_B*100) '%']);
disp(['恶性乳腺肿瘤确诊:' num2str(number_m_sim)...'  误诊:' num2str(number_M - number_m_sim)...'  确诊率p2=' num2str(number_m_sim/number_M*100) '%']);
disp(['建模时间为:' num2str(e) 's'] );

        运行结果如下:

        从上述结果可以看出,经遗传算法优化计算后,筛选出的一组输人自变量编号为: 2, 5, 6, 7, 8, 9, 10, 11,16,19,22,25,26,28,29,30,也就是说,筛选出的16个输入自变量分别为质地、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度的平均值,细胞核半径、紧密度及对称度的标准差,质地、光滑性、紧密度、凹陷点数、对称度及断裂度的最坏值。
        显而易见,经遗传算法优化筛选后,参与建模的输入自变量个数约为全部输入自变量个数的一半。对比优化筛选前后的 BP网络的测试结果,可以发现,当使用16个筛选出来的输人自变量进行建模时,预测准确率可以达到100%,相比使用全部自变量建立的模型,性能得到了改善和提升。另一方面,优化后的模型建立时间仅为4s左右,而优化前的模型建立需要29 s左右,这也表明,当使用遗传算法对输人自变量进行降维压缩后,建模时间缩短了很多。

5案例扩展

        将遗传算法与神经网络相结合,可以避免神经网络陷入局部极小、出现过拟合现象、泛化能力差等问题。针对输入自变量个数太多的模型,可以在建立模型前,利用遗传算法对输入自变量进行优化筛选,从而达到降维的目的。该方法已经成功应用于图像处理、光谱分析等领域中,随着研究的不断深入,其一定会得到更为广泛的应用。

6.完整代码和数据文件

【免费】遗传算法的决策变量降维matlab代码

相关文章:

遗传算法决策变量降维的matlab实现

1.案例背景 1.1遗传算法概述 遗传算法是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。它最初由美国Michigan大学的J. Holland教授提出,1967年, Holland 教授的学生 Bagley在其博士论文中首次提出了“遗传…...

基于Open3D和PyTorch3D读取三维数据格式OBJ

本节将讨论另一种广泛使用的3D数据文件格式,即OBJ文件格式。OBJ文件格式最初由Wavefront Technologies Inc.开发。与PLY文件格式类似,OBJ格式也有ASCII版本和二进制版本。二进制版本是专有的且未记录文档。本章主要讨论ASCII版本。 与之前类似,将通过示例来学习文件格式。第…...

带纽扣电池产品出口澳洲安全标准,纽扣电池IEC 60086认证

澳大利亚政府公布了《消费品&#xff08;纽扣/硬币电池&#xff09;安全标准》和《消费品&#xff08;纽扣/硬币电池&#xff09;信息标准》。届时出口纽扣/硬币电池以及含有纽扣/硬币电池产品到澳大利亚的供应商&#xff0c;必须遵守这些标准中的要求。 一、 安全标准及信息标…...

spring高级源码50讲-37-42(springBoot)

Boot 37) Boot 骨架项目 如果是 linux 环境&#xff0c;用以下命令即可获取 spring boot 的骨架 pom.xml curl -G https://start.spring.io/pom.xml -d dependenciesweb,mysql,mybatis -o pom.xml也可以使用 Postman 等工具实现 若想获取更多用法&#xff0c;请参考 curl …...

腾讯云、阿里云、华为云便宜云服务器活动整理汇总

云服务器的选择是一个很重要的事情&#xff0c;避免产生不必要的麻烦&#xff0c;建议选择互联网大厂提供的云计算服务&#xff0c;腾讯云、阿里云、华为云就是一个很不错的选择&#xff0c;云服务器稳定性、安全性以及售后各方面都更受用户认可&#xff0c;下面小编给大家整理…...

L1-055 谁是赢家(Python实现) 测试点全过

前言&#xff1a; {\color{Blue}前言&#xff1a;} 前言&#xff1a; 本系列题使用的是&#xff0c;“PTA中的团体程序设计天梯赛——练习集”的题库&#xff0c;难度有L1、L2、L3三个等级&#xff0c;分别对应团体程序设计天梯赛的三个难度。更新取决于题目的难度&#xff0c;…...

开发一个npm包

1 注册一个npm账号 npm https://www.npmjs.com/ 2 初始化一个npm 项目 npm init -y3编写一段代码 function fn(){return 12 }exports.hellofn;4发布到全局node_module npm install . -g5测试代码 创建一个text文件 npm link heath_apisnode index.js6登录(我默认的 https…...

介绍几种使用工具

FileWatch&#xff0c;观测文件变化&#xff0c;源码地址&#xff1a;https://github.com/ThomasMonkman/filewatch nlohmann::json&#xff0c;json封装解析&#xff0c;源码地址&#xff1a;https://github.com/nlohmann/json optionparser&#xff0c;解析选项&#xff0c;源…...

Vue:关于声明式导航中的 跳转、高亮、以及两个类名的定制

声明式导航-导航链接 文章目录 声明式导航-导航链接router-link的两大特点&#xff08;能跳转、能高亮&#xff09;声明式导航-两个类名定制两个高亮类名 实现导航高亮&#xff0c;实现方式其实&#xff0c;css&#xff0c;JavaScript , Vue ,都可以实现。其实关于路由导航&…...

Sharding-JDBC分库分表-自动配置与分片规则加载原理-3

Sharding JDBC自动配置的原理 与所有starter一样&#xff0c;shardingsphere-jdbc-core-spring-boot-starter也是通过SPI自动配置的原理实现分库分表配置加载&#xff0c;spring.factories文件中的自动配置类shardingsphere-jdbc-core-spring-boot-starter功不可没&#xff0c…...

E8267D 是德科技矢量信号发生器

描述 最先进的微波信号发生器 安捷伦E8267D PSG矢量信号发生器是业界首款集成式微波矢量信号发生器&#xff0c;I/Q调制最高可达44 GHz&#xff0c;典型输出功率为23 dBm&#xff0c;最高可达20 GHz&#xff0c;对于10 GHz信号&#xff0c;10 kHz偏移时的相位噪声为-120 dBc/…...

Git git fetch 和 git pull 区别

git pull和git fetch的作用都是用于从远程仓库获取最新代码&#xff0c;但它们之间有一些区别。 git pull会自动执行两个操作&#xff1a;git fetch和git merge。它从远程仓库获取最新代码&#xff0c;并将其合并到当前分支中。 示例&#xff1a;运行git pull origin master会从…...

软件UI工程师工作的岗位职责(合集)

软件UI工程师工作的岗位职责1 职责&#xff1a; 1.负责产品的UI视觉设计(手机软件界面 网站界面 图标设计产品广告及 企业文化的创意设计等); 2.负责公司各种客户端软件客户端的UE/UI界面及相关图标制作; 3.设定产品界面的整体视觉风格; 4.参与产品规划构思和创意过程&…...

Mac系统Anaconda环境配置Python的json库

本文介绍在Mac电脑的Anaconda环境中&#xff0c;配置Python语言中&#xff0c;用以编码、解码、处理JSON数据的json库的方法&#xff1b;在Windows电脑中配置json库的方法也是类似的&#xff0c;大家可以一并参考。 JSON&#xff08;JavaScript Object Notation&#xff09;是一…...

Python数据分析与数据挖掘:解析数据的力量

引言&#xff1a; 随着大数据时代的到来&#xff0c;数据分析和数据挖掘已经成为许多行业中不可或缺的一部分。在这个信息爆炸的时代&#xff0c;如何从大量的数据中提取有价值的信息&#xff0c;成为了企业和个人追求的目标。而Python作为一种强大的编程语言&#xff0c;提供…...

我的私人笔记(安装hive)

1.hive下载&#xff1a;Index of /dist/hive/hive-1.2.1 或者上传安装包至/opt/software&#xff1a;rz或winscp上传 2.解压 cd /opt/software tar -xzvf apache-hive-1.2.1-bin.tar.gz -C /opt/servers/ 3.重命名 mv apache-hive-1.2.1-bin hive 4.配置环境变量 vi /etc/…...

【kubernetes】k8s部署APISIX及在KubeSphere使用APISIX

Apache APISIX https://apisix.apache.org/ 功能比nginx-ingress更强 本文采用2.5.0版本 https://apisix.apache.org/zh/docs/apisix/2.15/getting-started/ 概述内容来源于官方&#xff0c;学习于马士兵云原生课程 概述 Apache APISIX 是什么&#xff1f; Apache APISIX 是 …...

串口接收数据-控制LED灯

目标 通过串口接收数据&#xff0c;对数据分析&#xff0c;控制8个LED灯按照设定时间闪烁。 8个LED灯可以任意设计&#xff0c;是否闪烁。闪烁时间按ms计算&#xff0c;通过串口发送&#xff0c;可设置1~4,294,967,296ms&#xff0c;也就是4字节数据协议自拟&#xff0c;有数…...

python面试题合集(一)

python技术面试题 1、Python中的幂运算 在python中幂运算是由两个 **星号运算的&#xff0c;实例如下&#xff1a; >>> a 2 ** 2 >>> a 4我们可以看到2的平方输出结果为4。 那么 ^指的是什么呢&#xff1f;我们用代码进行演示&#xff1a; >>>…...

论文浅尝 | 利用对抗攻击策略缓解预训练语言模型中的命名实体情感偏差问题...

笔记整理&#xff1a;田家琛&#xff0c;天津大学博士&#xff0c;研究方向为文本分类 链接&#xff1a;https://ojs.aaai.org/index.php/AAAI/article/view/26599 动机 近年来&#xff0c;随着预训练语言模型&#xff08;PLMs&#xff09;在情感分类领域的广泛应用&#xff0c…...

springboot web开发springmvc自动配置原理

前言 我们也知道springboot启用springmvc基本不用做什么配置可以很方便就使用了但是不了解原理,开发过程中遇到点问题估计就比较头疼,不管了解的深不深入,先巴拉一番再说… 下面我们先看看官网…我的版本是2.3.2版本,发现官网改动也比较大…不同版本自己巴拉下吧,结构虽然变化…...

发表于《自然》杂志:语音转文本BCI的新突破实现62字/分钟的速度

语音脑机接口&#xff08;BCI&#xff09;是一项创新技术&#xff0c;通过用户的大脑信号在用户和某些设备之间建立通信通道&#xff0c;它们在恢复残疾患者的言语和通信能力方面具有巨大潜力。 早期的研究虽然很有希望&#xff0c;但尚未达到足够高的精度来解码大脑活动&…...

微软 Turing Bletchley v3视觉语言模型更新:必应搜索图片更精准

据微软新闻稿透露&#xff0c;在推出第三代Turing Bletchley视觉语言模型后&#xff0c;微软计划逐步将其整合到Bing等相关产品中&#xff0c;以提供更出色的图像搜索体验。这款模型最初于2021年11月面世&#xff0c;并在2022年秋季开始邀请用户测试。 凭借用户的反馈和建议&am…...

Ubuntu 22.04 x86_64 源码编译 pytorch-v2.0.1 笔记【2】编译成功

20230831继续&#xff1a; 当前状态 (pytorch-build) yeqiangyeqiang-MS-7B23:~/Downloads/src/pytorch$ pwd /home/yeqiang/Downloads/src/pytorch (pytorch-build) yeqiangyeqiang-MS-7B23:~/Downloads/src/pytorch$ python3 -V Python 3.10.6 (pytorch-build) yeqiangyeqi…...

IIR滤波器

IIR滤波器原理 IIR的特点是&#xff1a;非线性相位、消耗资源少。 IIR滤波器的系统函数与差分方程如下所示&#xff1a; 由差分方程可知IIR滤波器存在反馈&#xff0c;因此在FPGA设计时要考虑到有限字长效应带来的影响。差分方程中包括两个部分&#xff1a;输入信号x(n)的M节…...

【QT】使用qml的QtWebEngine遇到的一些问题总结

在使用qt官方的一些QML的QtWebEngine相关的例程的时候&#xff0c;有时在运行会报如下错误&#xff1a; WebEngineContext used before QtWebEngine::initialize() or OpenGL context creation failed 这个问题在main函数里面最前面加上&#xff1a; QCoreApplication::setAttr…...

230902-部署Gradio到已有FastAPI及服务器中

1. 官方例子 run.py from fastapi import FastAPI import gradio as grCUSTOM_PATH "/gradio"app FastAPI()app.get("/") def read_main():return {"message": "This is your main app"}io gr.Interface(lambda x: "Hello, …...

Ubuntu本地快速搭建web小游戏网站,公网用户远程访问【内网穿透】

文章目录 前言1. 本地环境服务搭建2. 局域网测试访问3. 内网穿透3.1 ubuntu本地安装cpolar内网穿透3.2 创建隧道3.3 测试公网访问 4. 配置固定二级子域名4.1 保留一个二级子域名4.2 配置二级子域名4.3 测试访问公网固定二级子域名 前言 网&#xff1a;我们通常说的是互联网&am…...

【LeetCode-中等题】199. 二叉树的右视图

文章目录 题目方法一&#xff1a;层序遍历取每一层最后一个元素方法二&#xff1a;深度优先搜索 题目 方法一&#xff1a;层序遍历取每一层最后一个元素 // 方法一 &#xff1a;层序 集合(取每层子集合最后一个元素)// List<List<Integer>> Rlist new ArrayList…...

【调试经验】Ubuntu22.04 安装和配置MySQL 8.0.34

本文共计1469字&#xff0c;预计阅读时间5分钟 在安装新版本的MySQL到电脑时&#xff0c;按着网上一些教程执行发现错误繁多&#xff0c;最后索性自己摸索并把服务装好了。自己也整理了一下在操作时的笔记&#xff0c;上传上来希望能帮助到大家。 目录 正文 安装MySQL 配置…...