当前位置: 首页 > news >正文

Hugging Face实战-系列教程4:padding与attention_mask

🚩🚩🚩Hugging Face 实战系列 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在notebook中进行
本篇文章配套的代码资源已经上传

上篇内容:
Hugging Face实战-系列教程3:文本2分类

下篇内容:
Hugging Face实战-系列教程5:NER上(命名实体识别/文本标注/Doccano工具使用/关键信息抽取/Token分类/源码解读/代码逐行解读/文本BIO处理/文本分类/序列标注)

1 padding的作用

sequence1_ids = [[200, 200, 200]]
sequence2_ids = [[200, 200]]batched_ids = [[200, 200, 200],[200, 200, tokenizer.pad_token_id],
]print(model(torch.tensor(sequence1_ids)).logits)
print(model(torch.tensor(sequence2_ids)).logits)print(model(torch.tensor(batched_ids)).logits)

对应的输出:

tensor([[ 1.5694, -1.3895]], grad_fn=AddmmBackward0)
tensor([[ 0.5803, -0.4125]], grad_fn=AddmmBackward0)
tensor([[ 1.5694, -1.3895], [ 1.3374, -1.2163]], grad_fn=AddmmBackward0)

padding是很有用的,但是不需要了解的特别深入,看当前这一个例子就行了。

sequence1_ids、sequence1_ids分别表示两个样本,将两个样本做成batch。

输出实际上是两个对比,第一行和第二行是没有加入tokenizer.pad_token_id的输出,第三行是加入tokenizer.pad_token_id做成batch的输出。

sequence1_ids的结果是完全一样的,sequence2_ids的结果不同。很显然对于同一个样本加入来tokenizer.pad_token_id的输出是不相同的,这是因为默认的id和我们自己指定的id是不同的。

结论就是自己指定padding的时候,要同时指定attention_mask,不然就会把你指定的padding也计算来self-Attention。

怎么指定attention_mask呢?

2 attention_mask的作用

batched_ids = [[200, 200, 200],[200, 200, tokenizer.pad_token_id],
]attention_mask = [[1, 1, 1],[1, 1, 0],
]outputs = model(torch.tensor(batched_ids), attention_mask=torch.tensor(attention_mask))
print(outputs.logits)

输出结果:

tensor([[ 1.5694, -1.3895], [ 0.5803, -0.4125]], grad_fn=AddmmBackward0)

当需要自定义的时候,别忘记把Attention_mask指定上去,指定后,结果就能对的上了 。

3 不同padding方法

随便来组样本:

sequences = ["I've been waiting for a this course my whole life.", "So have I!", "I played basketball yesterday."]

在notebook中的输出:

{‘input_ids’: [[101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 2023, 2607, 2026, 2878, 2166, 1012, 102], [101, 2061, 2031, 1045, 999, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1045, 2209, 3455, 7483, 1012, 102, 0, 0, 0, 0, 0, 0, 0, 0]], ‘attention_mask’: [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}

一个三个句子,1最长,以1为标准,指定按照最长的为标准进行拼接填充:

# 按照最长的填充
model_inputs = tokenizer(sequences, padding="longest")
print(model_inputs)

当然也可以按照模型所能容忍的最大的长度来指定:

# BERT默认最大是512
model_inputs = tokenizer(sequences, padding="max_length")
print(model_inputs)

一般默认的最大的就是512,虽然openAI那个可以更大,但是一般那都hold不住了。

这是padding到512大小在notebook的输出:

{‘input_ids’: [[101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 2023, 2607, 2026, 2878, 2166, 1012, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 2061, 2031, 1045, 999, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[101, 1045, 2209, 3455, 7483, 1012, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
‘attention_mask’: [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}

这肯定是没有必要了,也可以自己指定一个确定的值:

填充到多少

model_inputs = tokenizer(sequences, padding="max_length", max_length=8)
print(model_inputs)

在notebook的输出:

{‘input_ids’: [[101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 2023,
2607, 2026, 2878, 2166, 1012, 102], [101, 2061, 2031, 1045, 999, 102,
0, 0], [101, 1045, 2209, 3455, 7483, 1012, 102, 0]], ‘attention_mask’:
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0,
0], [1, 1, 1, 1, 1, 1, 1, 0]]}

在这个结果中,没有到8的padding到8,但是比8还长的没有处理,加入截断操作就可以进行处理了:

#到多少就截断

model_inputs = tokenizer(sequences, max_length=10, truncation=True)
print(model_inputs)

{‘input_ids’: [[101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 2023,
102], [101, 2061, 2031, 1045, 999, 102], [101, 1045, 2209, 3455, 7483,
1012, 102]], ‘attention_mask’: [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1,
1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]]}

4.4 返回数据格式
最后别忘记返回成PyTorch的tensor格式:

#最好返回tensor

model_inputs = tokenizer(sequences, padding=True, return_tensors="pt")
print(model_inputs)

{‘input_ids’: tensor([[ 101, 1045, 1005, 2310, 2042, 3403, 2005, 1037,
2023, 2607, 2026, 2878,
2166, 1012, 102],
[ 101, 2061, 2031, 1045, 999, 102, 0, 0, 0, 0, 0, 0,
0, 0, 0],
[ 101, 1045, 2209, 3455, 7483, 1012, 102, 0, 0, 0, 0, 0,
0, 0, 0]]), ‘attention_mask’: tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}

现在你应该已经掌握了Hugging Face的工具包了,那我们应该怎样去训练我们的模型呢?

上篇内容:
Hugging Face实战-系列教程3:文本2分类

下篇内容:
Hugging Face实战-系列教程5:NER上(命名实体识别/文本标注/Doccano工具使用/关键信息抽取/Token分类/源码解读/代码逐行解读/文本BIO处理/文本分类/序列标注)

相关文章:

Hugging Face实战-系列教程4:padding与attention_mask

🚩🚩🚩Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在notebook中进行 本篇文章配套的代码资源已经上传 上篇内容: Hugging Face实战-系列教程3:文本2分类 下篇内容: …...

睿趣科技:抖音开网店卖玩具怎么样

近年来,随着社交媒体平台的飞速发展,抖音作为一款短视频分享应用也迅速崭露头角。而在这个充满创业机遇的时代背景下,许多人开始探索在抖音平台上开设网店,尤其是卖玩具类商品,那么抖音开网店卖玩具究竟怎么样呢? 首先…...

简易虚拟培训系统-UI控件的应用4

目录 Slider组件的常用参数 示例-使用Slider控制主轴 示例-Slider控制溜板箱的移动 本文以操作面板为例,介绍使用Slider控件控制开关和速度。 Slider组件的常用参数 Slider组件下面包含了3个子节点,都是Image组件,负责Slider的背景、填充区…...

#include <graphics.h> #include <conio.h> #include<stdlib.h>无法打开源文件解决方案

一、问题描述 学习数据结构链表的过程中&#xff0c;在编写漫天星星闪烁的代码时&#xff0c;遇到了如下图所示的报错&#xff0c;#include <graphics.h> 、 #include <conio.h> 等无法打开源文件。 并且主程序中initgraph(初始化画布)、setfillcolor&#xff08;…...

【C语言】数据结构的基本概念与评价算法的指标

1. 数据结构的基本概念 1.1 基本概念和术语 1.1.1 数据 数据是信息的载体,是描述客观事物属性的数、字符及所有能输入到计算机中并被计算机程序识别和处理的符号的集合。数据是计算机程序加工的原料 1.1.2 数据元素 数据元素是数据的基本单位,通常作为一个整体进行考虑和…...

[PyTorch][chapter 54][Variational Auto-Encoder 实战]

前言&#xff1a; 这里主要实现&#xff1a; Variational Autoencoders (VAEs) 变分自动编码器 其训练效果如下 训练的过程中要注意调节forward 中的kle ,调参。 整个工程两个文件&#xff1a; vae.py main.py 目录&#xff1a; vae main 一 vae 文件名&#xff1a; vae…...

Java实现HTTP的上传与下载

相信很多人对于java文件下载的过程都存在一些疑惑&#xff0c;比如下载上传文件会不会占用vm内存&#xff0c;上传/下载大文件会不会导致oom。下面从字节流的角度看下载/上传的实现&#xff0c;可以更加深入理解文件的上传和下载功能。 文件下载 首先明确&#xff0c;文件下载…...

VPG算法

VPG算法 前言 首先来看经典的策略梯度REINFORCE算法&#xff1a; 在REINFORCE中&#xff0c;每次采集一个episode的轨迹&#xff0c;计算每一步动作的回报 G t G_t Gt​&#xff0c;与动作概率对数相乘&#xff0c;作为误差反向传播&#xff0c;有以下几个特点&#xff1a; …...

docker 笔记5:redis 集群分布式存储案例

尚硅谷Docker实战教程&#xff08;docker教程天花板&#xff09;_哔哩哔哩_bilibili 目录 1.cluster(集群)模式-docker版哈希槽分区进行亿级数据存储 1.1面试题 1.1.1 方案1 哈希取余分区 1.1.2 方案2 一致性哈希算法分区 原理 优点 一致性哈希算法的容错性 一致性…...

【Vue2】 axios库

网络请求库-axios库 认识Axios库为什么选择Axios库安装Axios axios发送请求常见的配置选项简单请求可以给Axios设置公共的基础配置发送多个请求 axios创建实例为什么要创建axios的实例 axios的拦截器请求拦截器响应拦截器 axios请求封装 认识Axios库 为什么选择Axios库 在游览…...

云计算 - 百度AIStudio使用小结

云计算 - 百度AIStudio使用小结 前言 本文以ffmpeg处理视频为例&#xff0c;小结一下AI Studio的使用体验及一些避坑技巧。 算力获得 免费的算力获得方式为&#xff1a;每日登录后运行一个项目&#xff08;只需要点击运行&#xff0c;不需要真正运行&#xff09;即可获得8小…...

刷新你对Redis持久化的认知

认识持久化 redis是一个内存数据库&#xff0c;数据存储到内存中。而内存的数据是不持久的&#xff0c;要想做到持久化&#xff0c;就需要让redis把数据存储到硬盘上。因此redis既要在内存上存储一份数据&#xff0c;还要在硬盘上存储一份数据。这样这两份数据在理论上是完全相…...

Greenplum-最佳实践小结

注&#xff1a;本文翻译自https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/best_practices-logfiles.html 数据模型 Greenplum数据库是一个分析型MPP无共享数据库。该模型与高度规范化/事务性的SMP数据库明显不同。Greenplum数据库使用适合MPP分析处理的非…...

从Gamma空间改为Linear空间会导致性能下降吗

1&#xff09;从Gamma空间改为Linear空间会导致性能下降吗 2&#xff09;如何处理没有使用Unity Ads却收到了GooglePlay平台的警告 3&#xff09;C#端如何处理xLua在执行DoString时候死循环 4&#xff09;Texture2DArray相关 这是第350篇UWA技术知识分享的推送&#xff0c;精选…...

双轨制的发展,弊端和前景

双轨制是一种经济体制&#xff0c;指两种不同的规则或机制并行运行&#xff0c;以适应不同的市场或客户需求。双轨制最早出现在中国的改革开放中&#xff0c;是从计划经济向市场经济过渡的一种渐进式改革方式。 双轨制的发展可以分为三个阶段&#xff1a; 第一阶段&#xff08;…...

生成对抗网络(GAN):在图像生成和修复中的应用

文章目录 什么是生成对抗网络&#xff08;GAN&#xff09;&#xff1f;GAN在图像生成中的应用图像生成风格迁移 GAN在图像修复中的应用图像修复 拓展应用领域总结 &#x1f389;欢迎来到AIGC人工智能专栏~生成对抗网络&#xff08;GAN&#xff09;&#xff1a;在图像生成和修复…...

扬杰科技携手企企通,召开SRM采购供应链协同系统项目启动会

近日&#xff0c;中国功率半导体领先企业扬州扬杰电子科技股份有限公司&#xff08;以下简称“扬杰科技”&#xff09;与企企通召开SRM采购供应链协同系统项目启动会&#xff0c;双方项目团队成员一同出席本次会议。 会上&#xff0c;双方就扬杰科技采购供应链管理平台项目的目…...

AtCoder Beginner Contest 318

目录 A - Full Moon B - Overlapping sheets C - Blue Spring D - General Weighted Max Matching E - Sandwiches F - Octopus A - Full Moon #include<bits/stdc.h> using namespace std; const int N1e65; typedef long long ll ; const int maxv4e65; typedef …...

《Python魔法大冒险》003 两个神奇的魔法工具

魔法师:小鱼,要开始编写魔法般的Python程序,我们首先需要两个神奇的工具:Python解释器和代码编辑器。 小鱼:这两个工具是做什么的? 魔法师:你可以把Python解释器看作是一个魔法棒,只要你向它说出正确的咒语,它就会为你施展魔法。 小鱼:那这个解释器和我之前用的电…...

每日一题-动态规划(从不同类型的物品中各挑选一个,使得最后花费总和等于1000)

四种类型的物品&#xff0c;每一种类型物品数量都是n&#xff0c;先要从每种类型的物品中挑选一件&#xff0c;使得最后花费总和等于1000 暴力做法10000^4 看到花费总和是1000&#xff0c;很小且固定的数字&#xff0c;肯定有玄机&#xff0c;从这里想应该是用dp&#xff0c;不…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分&#xff1a; 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...