当前位置: 首页 > news >正文

深度解析BERT:从理论到Pytorch实战

本文从BERT的基本概念和架构开始,详细讲解了其预训练和微调机制,并通过Python和PyTorch代码示例展示了如何在实际应用中使用这一模型。我们探讨了BERT的核心特点,包括其强大的注意力机制和与其他Transformer架构的差异。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

一、引言

在信息爆炸的时代,自然语言处理(NLP)成为了一门极其重要的学科。它不仅应用于搜索引擎、推荐系统,还广泛应用于语音识别、情感分析等多个领域。然而,理解和生成自然语言一直是机器学习面临的巨大挑战。接下来,我们将深入探讨自然语言处理的一些传统方法,以及它们在处理语言模型时所面临的各种挑战。

传统NLP技术概览

规则和模式匹配

早期的NLP系统大多基于规则和模式匹配。这些方法具有高度的解释性,但缺乏灵活性。例如,正则表达式和上下文无关文法(CFG)被用于文本匹配和句子结构的解析。

基于统计的方法

随着计算能力的提升,基于统计的方法如隐马尔可夫模型(HMM)和最大熵模型逐渐流行起来。这些模型利用大量的数据进行训练,以识别词性、句法结构等。

词嵌入和分布式表示

Word2Vec、GloVe等词嵌入方法标志着NLP从基于规则到基于学习的向量表示的转变。这些模型通过分布式表示捕捉单词之间的语义关系,但无法很好地处理词序和上下文信息。

循环神经网络(RNN)与长短时记忆网络(LSTM)

RNN和LSTM模型为序列数据提供了更强大的建模能力。特别是LSTM,通过其内部门机制解决了梯度消失和梯度爆炸的问题,使模型能够捕获更长的依赖关系。

Transformer架构

file
Transformer模型改变了序列建模的格局,通过自注意力(Self-Attention)机制有效地处理了长距离依赖,并实现了高度并行化。但即使有了这些进展,仍然存在许多挑战和不足。

在这一背景下,BERT(Bidirectional Encoder Representations from Transformers)模型应运而生,它综合了多种先进技术,并在多个NLP任务上取得了显著的成绩。


二、什么是BERT?

file

BERT的架构

BERT(Bidirectional Encoder Representations from Transformers)模型基于Transformer架构,并通过预训练与微调的方式,对自然语言进行深度表示。在介绍BERT架构的各个维度和细节之前,我们先理解其整体理念。

整体理念

BERT的设计理念主要基于以下几点:

  • 双向性(Bidirectional): 与传统的单向语言模型不同,BERT能同时考虑到词语的前后文。

  • 通用性(Generality): 通过预训练和微调的方式,BERT能适用于多种自然语言处理任务。

  • 深度(Depth): BERT通常具有多层(通常为12层或更多),这使得模型能够捕捉复杂的语义和语法信息。

架构部件

Encoder层

file
BERT完全基于Transformer的Encoder层。每个Encoder层都包含两个主要的部分:

  1. 自注意力机制(Self-Attention): 这一机制允许模型考虑到输入序列中所有单词对当前单词的影响。

  2. 前馈神经网络(Feed-Forward Neural Networks): 在自注意力的基础上,前馈神经网络进一步对特征进行非线性变换。

嵌入层(Embedding Layer)

BERT使用了Token Embeddings, Segment Embeddings和Position Embeddings三种嵌入方式,将输入的单词和附加信息编码为固定维度的向量。

部件的组合

  • 每个Encoder层都依次进行自注意力和前馈神经网络计算,并附加Layer Normalization进行稳定。

  • 所有Encoder层都是堆叠(Stacked)起来的,这样能够逐层捕捉更抽象和更复杂的特征。

  • 嵌入层的输出会作为第一个Encoder层的输入,然后逐层传递。

架构特点

  • 参数共享: 在预训练和微调过程中,所有Encoder层的参数都是共享的。

  • 灵活性: 由于BERT的通用性和深度,你可以根据任务的不同在其基础上添加不同类型的头部(Head),例如分类头或者序列标记头。

  • 高计算需求: BERT模型通常具有大量的参数(几亿甚至更多),因此需要大量的计算资源进行训练。

通过这样的架构设计,BERT模型能够在多种自然语言处理任务上取得出色的表现,同时也保证了模型的灵活性和可扩展性。


三、BERT的核心特点

file
BERT模型不仅在多项NLP任务上取得了显著的性能提升,更重要的是,它引入了一系列在自然语言处理中具有革新性的设计和机制。接下来,我们将详细探讨BERT的几个核心特点。

Attention机制

自注意力(Self-Attention)

自注意力是BERT模型中一个非常重要的概念。不同于传统模型在处理序列数据时,只能考虑局部或前序的上下文信息,自注意力机制允许模型观察输入序列中的所有词元,并为每个词元生成一个上下文感知的表示。

# 自注意力机制的简单PyTorch代码示例
import torch.nn.functional as Fclass SelfAttention(nn.Module):def __init__(self, embed_size, heads):super(SelfAttention, self).__init__()self.embed_size = embed_sizeself.heads = headsself.head_dim = embed_size // headsassert (self.head_dim * heads == embed_size), "Embedding size needs to be divisible by heads"self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)self.fc_out = nn.Linear(heads * self.head_dim, embed_size)def forward(self, values, keys, queries, mask):N = queries.shape[0]value_len, key_len, query_len = values.shape[1], keys.shape[1], queries.shape[1]# Split the embedding into self.head different piecesvalues = values.reshape(N, value_len, self.heads, self.head_dim)keys = keys.reshape(N, key_len, self.heads, self.head_dim)queries = queries.reshape(N, query_len, self.heads, self.head_dim)values = self.values(values)keys = self.keys(keys)queries = self.queries(queries)# Scaled dot-product attentionattention = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])if mask is not None:attention = attention.masked_fill(mask == 0, float("-1e20"))attention = torch.nn.functional.softmax(attention, dim=3)out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(N, query_len, self.heads * self.head_dim)out = self.fc_out(out)return out

多头注意力(Multi-Head Attention)

BERT进一步引入了多头注意力(Multi-Head Attention),将自注意力分成多个“头”,每个“头”学习序列中不同部分的上下文信息,最后将这些信息合并起来。

预训练和微调

BERT模型的成功很大程度上归功于其两阶段的训练策略:预训练(Pre-training)和微调(Fine-tuning)。下面我们会详细地探讨这两个过程的特点、技术点和需要注意的事项。

预训练(Pre-training)

预训练阶段是BERT模型训练过程中非常关键的一步。在这个阶段,模型在大规模的无标签文本数据上进行训练,主要通过以下两种任务来进行:

  1. 掩码语言模型(Masked Language Model, MLM): 在这个任务中,输入句子的某个比例的词会被随机地替换成特殊的[MASK]标记,模型需要预测这些被掩码的词。

  2. 下一个句子预测(Next Sentence Prediction, NSP): 模型需要预测给定的两个句子是否是连续的。

技术点:

  • 动态掩码: 在每个训练周期(epoch)中,模型看到的每一个句子的掩码都是随机的,这样可以增加模型的鲁棒性。

  • 分词器: BERT使用了WordPiece分词器,能有效处理未登录词(OOV)。

注意点:

  • 数据规模需要非常大,以充分训练庞大的模型参数。
  • 训练过程通常需要大量的计算资源,例如高性能的GPU或TPU。

微调(Fine-tuning)

在预训练模型好之后,接下来就是微调阶段。微调通常在具有标签的小规模数据集上进行,以使模型更好地适应特定的任务。

技术点:

  • 学习率调整: 由于模型已经在大量数据上进行了预训练,因此微调阶段的学习率通常会设置得相对较低。

  • 任务特定头: 根据任务的不同,通常会在BERT模型的顶部添加不同的网络层(例如,用于分类任务的全连接层、用于序列标记的CRF层等)。

注意点:

  • 避免过拟合:由于微调数据集通常比较小,因此需要仔细选择合适的正则化策略,如Dropout或权重衰减(weight decay)。

通过这两个阶段的训练,BERT不仅能够捕捉到丰富的语义和语法信息,还能针对特定任务进行优化,从而在各种NLP任务中都表现得非常出色。

BERT与其他Transformer架构的不同之处

预训练策略

虽然Transformer架构通常也会进行某种形式的预训练,但BERT特意设计了两个阶段:预训练和微调。这使得BERT可以首先在大规模无标签数据上进行预训练,然后针对特定任务进行微调,从而实现了更广泛的应用。

双向编码

大多数基于Transformer的模型(例如GPT)通常只使用单向或者条件编码。与之不同,BERT使用双向编码,可以更全面地捕捉到文本中词元的上下文信息。

掩码语言模型(Masked Language Model)

BERT在预训练阶段使用了一种名为“掩码语言模型”(Masked Language Model, MLM)的特殊训练策略。在这个过程中,模型需要预测输入序列中被随机掩码(mask)的词元,这迫使模型更好地理解句子结构和语义信息。


四、BERT的场景应用

BERT模型由于其强大的表征能力和灵活性,在各种自然语言处理(NLP)任务中都有广泛的应用。下面,我们将探讨几个常见的应用场景,并提供相关的代码示例。

文本分类

文本分类是NLP中最基础的任务之一。使用BERT,你可以轻松地将文本分类到预定义的类别中。

from transformers import BertTokenizer, BertForSequenceClassification
import torch# 加载预训练的BERT模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')# 准备输入数据
inputs = tokenizer("Hello, how are you?", return_tensors="pt")# 前向传播
labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1, label set as 1
outputs = model(**inputs, labels=labels)
loss = outputs.loss
logits = outputs.logits

情感分析

情感分析是文本分类的一个子任务,用于判断一段文本的情感倾向(正面、负面或中性)。

# 继续使用上面的模型和分词器
inputs = tokenizer("I love programming.", return_tensors="pt")# 判断情感
outputs = model(**inputs)
logits = outputs.logits
predictions = torch.softmax(logits, dim=-1)

命名实体识别(Named Entity Recognition, NER)

命名实体识别是识别文本中特定类型实体(如人名、地名、组织名等)的任务。

from transformers import BertForTokenClassification# 加载用于Token分类的BERT模型
model = BertForTokenClassification.from_pretrained('dbmdz/bert-large-cased-finetuned-conll03-english')# 输入数据
inputs = tokenizer("My name is John.", return_tensors="pt")# 前向传播
outputs = model(**inputs)
logits = outputs.logits

文本摘要

BERT也可以用于生成文本摘要,即从一个长文本中提取出最重要的信息。

from transformers import BertForConditionalGeneration# 加载用于条件生成的BERT模型(这是一个假设的例子,实际BERT原生不支持条件生成)
model = BertForConditionalGeneration.from_pretrained('some-conditional-bert-model')# 输入数据
inputs = tokenizer("The quick brown fox jumps over the lazy dog.", return_tensors="pt")# 生成摘要
summary_ids = model.generate(inputs.input_ids, num_beams=4, min_length=5, max_length=20)
print(tokenizer.decode(summary_ids[0], skip_special_tokens=True))

这只是使用BERT进行实战应用的冰山一角。其灵活和强大的特性使它能够广泛应用于各种复杂的NLP任务。通过合理的预处理、模型选择和微调,你几乎可以用BERT解决任何自然语言处理问题。


五、BERT的Python和PyTorch实现

file

预训练模型的加载

加载预训练的BERT模型是使用BERT进行自然语言处理任务的第一步。由于BERT模型通常非常大,手动实现整个架构并加载预训练权重是不现实的。幸运的是,有几个库简化了这一过程,其中包括transformers库,该库提供了丰富的预训练模型和相应的工具。

安装依赖库

首先,你需要安装transformerstorch库。你可以使用下面的pip命令进行安装:

pip install transformers
pip install torch

加载模型和分词器

使用transformers库,加载BERT模型和相应的分词器变得非常简单。下面是一个简单的示例:

from transformers import BertTokenizer, BertModel# 初始化分词器和模型
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")# 查看模型架构
print(model)

这段代码会下载BERT的基础版本(uncased)和相关的分词器。你还可以选择其他版本,如bert-large-uncased

输入准备

加载了模型和分词器后,下一步是准备输入数据。假设我们有一个句子:“Hello, BERT!”。

# 分词
inputs = tokenizer("Hello, BERT!", padding=True, truncation=True, return_tensors="pt")print(inputs)

tokenizer会自动将文本转换为模型所需的所有类型的输入张量,包括input_idsattention_mask等。

模型推理

准备好输入后,下一步是进行模型推理,以获取各种输出:

with torch.no_grad():outputs = model(**inputs)# 输出的是一个元组
# outputs[0] 是所有隐藏状态的最后一层的输出
# outputs[1] 是句子的CLS标签的隐藏状态
last_hidden_states = outputs[0]
pooler_output = outputs[1]print(last_hidden_states.shape)
print(pooler_output.shape)

输出的last_hidden_states张量的形状为 [batch_size, sequence_length, hidden_dim],而pooler_output的形状为 [batch_size, hidden_dim]

以上就是加载预训练BERT模型和进行基本推理的全过程。在理解了这些基础知识后,你可以轻松地将BERT用于各种NLP任务,包括但不限于文本分类、命名实体识别或问答系统。

微调BERT模型

微调(Fine-tuning)是将预训练的BERT模型应用于特定NLP任务的关键步骤。在此过程中,我们在特定任务的数据集上进一步训练模型,以便更准确地进行预测或分类。以下是使用PyTorch和transformers库进行微调的详细步骤。

数据准备

假设我们有一个简单的文本分类任务,其中有两个类别:正面和负面。我们将使用PyTorch的DataLoaderDataset进行数据加载和预处理。

from torch.utils.data import DataLoader, Dataset
import torchclass TextClassificationDataset(Dataset):def __init__(self, texts, labels, tokenizer):self.texts = textsself.labels = labelsself.tokenizer = tokenizerdef __len__(self):return len(self.texts)def __getitem__(self, idx):text = self.texts[idx]label = self.labels[idx]inputs = self.tokenizer(text, padding='max_length', truncation=True, max_length=512, return_tensors="pt")return {'input_ids': inputs['input_ids'].flatten(),'attention_mask': inputs['attention_mask'].flatten(),'labels': torch.tensor(label, dtype=torch.long)}# 假设texts和labels分别是文本和标签的列表
texts = ["I love programming", "I hate bugs"]
labels = [1, 0]
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')dataset = TextClassificationDataset(texts, labels, tokenizer)
dataloader = DataLoader(dataset, batch_size=2)

微调模型

在这里,我们将BERT模型与一个简单的分类层组合。然后,在微调过程中,同时更新BERT模型和分类层的权重。

from transformers import BertForSequenceClassification
from torch.optim import AdamW# 初始化模型
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)# 使用AdamW优化器
optimizer = AdamW(model.parameters(), lr=1e-5)# 训练模型
for epoch in range(3):for batch in dataloader:input_ids = batch['input_ids']attention_mask = batch['attention_mask']labels = batch['labels']outputs = model(input_ids, attention_mask=attention_mask, labels=labels)loss = outputs.lossloss.backward()optimizer.step()optimizer.zero_grad()print(f'Epoch {epoch + 1} completed')

模型评估

完成微调后,我们可以在测试数据集上评估模型的性能。

# 在测试数据集上进行评估...

通过这样的微调过程,BERT模型不仅能够从预训练中获得的通用知识,而且能针对特定任务进行优化。

六、总结

file
经过对BERT(Bidirectional Encoder Representations from Transformers)的深入探讨,我们有机会一窥这一先进架构的内在复杂性和功能丰富性。从其强大的双向注意力机制,到预训练和微调的多样性应用,BERT已经在自然语言处理(NLP)领域中设置了新的标准。

架构的价值

  1. 预训练和微调: BERT的预训练-微调范式几乎是一种“一刀切”的解决方案,可以轻松地适应各种NLP任务,从而减少了从头开始训练模型的复杂性和计算成本。

  2. 通用性与专门化: BERT的另一个优点是它的灵活性。虽然原始的BERT模型是一个通用的语言模型,但通过微调,它可以轻松地适应多种任务和行业特定的需求。

  3. 高度解释性: 虽然深度学习模型通常被认为是“黑盒”,但BERT和其他基于注意力的模型提供了一定程度的解释性。例如,通过分析注意力权重,我们可以了解模型在做决策时到底关注了哪些部分的输入。

发展前景

  1. 可扩展性: 虽然BERT模型本身已经非常大,但它的架构是可扩展的。这为未来更大和更复杂的模型铺平了道路,这些模型有可能捕获更复杂的语言结构和语义。

  2. 多模态学习与联合训练: 随着研究的进展,将BERT与其他类型的数据(如图像和音频)结合的趋势正在增加。这种多模态学习方法将进一步提高模型的泛化能力和应用范围。

  3. 优化与压缩: 虽然BERT的性能出色,但其计算成本也很高。因此,模型优化和压缩将是未来研究的重要方向,以便在资源受限的环境中部署这些高性能模型。

综上所述,BERT不仅是自然语言处理中的一个里程碑,也为未来的研究和应用提供了丰富的土壤。正如我们在本文中所探讨的,通过理解其内部机制和学习如何进行有效的微调,我们可以更好地利用这一强大工具来解决各种各样的问题。毫无疑问,BERT和类似的模型将继续引领NLP和AI的未来发展。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

相关文章:

深度解析BERT:从理论到Pytorch实战

本文从BERT的基本概念和架构开始,详细讲解了其预训练和微调机制,并通过Python和PyTorch代码示例展示了如何在实际应用中使用这一模型。我们探讨了BERT的核心特点,包括其强大的注意力机制和与其他Transformer架构的差异。 关注TechLead&#x…...

小程序数据导出文件

小程序josn数据生成excel文件 先从下载传送门将xlsx.mini.min.js拷贝下来,新建xlsx.js文件放入小程序项目文件夹下。 const XLSX require(./xlsx)//在需要用的页面中引入// 定义导出 Excel 报表的方法exportData() {const that thislet newData [{time:2021,val…...

hadoop1.2.1伪分布式搭建

0.使用host-only方式 将Windows上的虚拟网卡改成跟Linux上的网卡在同一网段 注意:一定要将widonws上的WMnet1的IP设置和你的虚拟机在同一网段,但是IP不能相同 1.Linux环境配置(windows下面的防火墙也要关闭) 1.1修改主…...

【校招VIP】前端JavaScript语言之跨域

考点介绍: 什么是跨域?浏览器从一个域名的网页去请求另一个域名的资源时,域名、端口、协议任一不同,都是跨域。跨域是前端校招的一个重要考点,在面试过程中经常遇到,需要着重掌握。本期分享的前端算法考点之…...

mysql调优小计

1.选择最合适的字段属性:类型、⻓度、是否允许NULL等;尽量把字段设为not null,⼀⾯查询时对⽐是否为null; 2.要尽量避免全表扫描,⾸先应考虑在 where 及 order by 涉及的列上建⽴索引。 3.应尽量避免在 where ⼦句中对…...

AI:04-基于机器学习的蘑菇分类

蘑菇是一类广泛分布的真菌,其中许多种类具有重要的食用和药用价值,但也存在着一些有毒蘑菇。因此,准确地区分可食用和有毒的蘑菇对于保障人们的食品安全和健康至关重要。本研究旨在基于机器学习技术开发一种蘑菇分类系统,以实现对蘑菇的自动分类和识别。通过构建合适的数据…...

算法——排序

排序 下面的代码会用到宏定义,因为再C中没有swap交换函数,所以对于swap的宏定义代码如下: #define swap(a, b) {\__typeof(a) __a a; a b; b __a;\ } 稳定排序: 1.插入排序: 插入排序会将数组,分位两个部…...

leetCode动态规划“不同路径II”

迷宫问题是比较经典的算法问题,一般可以用动态规划、回溯等方法进行解题,这道题目是我昨晚不同路径这道题趁热打铁继续做的,思路与原题差不多,只是有需要注意细节的地方,那么话不多说,直接上coding和解析&a…...

100天精通Python(可视化篇)——第99天:Pyecharts绘制多种炫酷K线图参数说明+代码实战

文章目录 专栏导读一、K线图介绍1. 说明2. 应用场景 二、配置说明三、K线图实战1. 普通k线图2. 添加辅助线3. k线图鼠标缩放4. 添加数据缩放滑块5. K线周期图表 书籍推荐 专栏导读 🔥🔥本文已收录于《100天精通Python从入门到就业》:本专栏专…...

哈希表与有序表

哈希表与有序表 Set结构 key Map结构 key-value 哈希表 哈希表的时间复杂度都是常数项级别的,但常数较大 增删改查的时间都是常数级别的,与数据量无关 当哈希表存储的值是基础数据类型(Integer - int),哈希表中内…...

什么时候使用RPA?如何使用RPA?需要什么样的硬件支持?需要安装哪些软件?

RPA(Robotic Process Automation)是一种用于自动化执行重复性任务的技术,它可以帮助企业提高工作效率,降低人力成本,并减少人为错误。RPA适用于各种行业和场景,例如财务、人力资源、客户服务、IT运维等。 …...

R语言入门——line和lines的区别

目录 0 引言一、 line()二、 lines() 0 引言 首先,从直观上看,lines比line多了一个s,但它们还是有很大的区别的,下面将具体解释这个两个函数的区别。 一、 line() 从R语言的帮助文档中找到,line()的使用&#xff0c…...

C语言:static关键字的使用

1.static修饰局部变量 这是static关键字使用最多的情况。我们知道局部变量是在程序运行阶段在栈上创建的,但是static修饰的局部变量是在程序编译阶段在代码段(静态区)创建的。所以在static修饰的变量所在函数执行结束后该变量依然存在。 //…...

AUTOSAR知识点 之 ECUM (三):ECUM的ISOLAR-AB配置及代码解析

目录 1、概述 2、ISOLAR-AB配置 2.1、EcuMGeneral 2.2、EcuMConfiguration 2.2.1、EcuMDefaultShutdownTarget 2.2.2、EcuMDriverInitListOne...

2023年MySQL-8.0.34保姆级安装教程

重点放前面:演示环境为windows环境。 MySQL社区版本安装教程如下: 一、MySQL安装包下载二、安装配置设置三、配置环境变量 大体分为3个步骤:①安装包的下载;②安装配置设置;③配置环境变量 一、MySQL安装包下载 下载官…...

ElasticSearch入门

一、基本命令_cat 1、查看节点信息 http://192.168.101.132:9200/_cat/nodes2、查看健康状况 http://192.168.101.132:9200/_cat/health3、查看主节点的信息 http://192.168.101.132:9200/_cat/master4、查看所有索引 http://192.168.101.132:9200/_cat/indices二、索引一…...

RocketMQ的Broker

1 Broker角色 Broker角色分为ASYNC_MASTER (异步主机)、SYNC_MASTER (同步主机)以及SLAVE (从机)。如果对消息的可靠性要求比较严格,可以采用SYNC_MASTER加SLAV E的部署方式。如果对消息可靠性要求不高,可以采用ASYNC_MASTER加ASL AVE的部署方式。如果只…...

使用Puppeteer进行游戏数据可视化

导语 Puppeteer是一个基于Node.js的库,可以用来控制Chrome或Chromium浏览器,实现网页操作、截图、测试、爬虫等功能。本文将介绍如何使用Puppeteer进行游戏数据的爬取和可视化,以《英雄联盟》为例。 概述 《英雄联盟》是一款由Riot Games开…...

【Flask】from flask_sqlalchemy import SQLAlchemy报错

【可能出现的情况】 1、未安装 Flask-SQLAlchemy: 在使用 flask_sqlalchemy 之前,你需要确保已经通过 pip 安装了 Flask-SQLAlchemy。可以通过以下命令安装它: pip install Flask-SQLAlchemy 2、包名大小写问题: Python 是区分大…...

索引简单概述(SQL)

一、什么是索引? 索引是一种特殊的文件(InnoDB数据表上的索引是表空间的一个组成部分),他们包含着对数据表里所有记录的引用指针。 索引是一种数据结构。数据库索引,是数据库管理系统中一个排序的数据结构&#xff0…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线, n r n_r nr​ 根接收天线的 MIMO 系…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL

ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...