AI「反腐」,德国马普所结合 NLP 和 DNN 开发抗蚀合金
内容一览:在被不锈钢包围的世界中,我们可能都快忘记了腐蚀的存在。然而,腐蚀存在于生活中的方方面面。无论是锈迹斑斑的钢钉,老化漏液的电线,还是失去光泽的汽车,这一切的发生都与腐蚀有关。据统计,全世界每年由金属腐蚀带来的经济损失超过
2.5 万亿美元,远超过其他自然灾害。其中,腐蚀在中国造成的经济损失约 3,949 亿美元,占中国 GDP 的 4.2%。正因为此,研究者们一直在探索抗蚀性能更好的合金或是金属保护膜。如今,在优化材料抗蚀性能的过程中,AI 派上了用场。关键词:自然语言处理 深度神经网络 腐蚀
作者 | 雪菜
编辑 | 三羊
本文首发于 HyperAI 超神经微信公众平台~
据美国腐蚀工程师协会 (NACE, National Association of Corrosion Engineers) 统计,2013 年全世界由腐蚀造成的经济损失超 2.5 万亿。同时,中国也饱受腐蚀的困扰,经济损失约 3,949 亿美元,占当年 GDP 的 4.2%,较其他发达国家比例略高。
作为对比,2008 年汶川大地震造成的经济损失约 1,100 亿美元。也就是说,早在 2013 年,仅腐蚀为我国带来的经济损失,就超过了 3 个汶川大地震。
表 1:2013 年世界各地因腐蚀造成的经济损失(单位:十亿美元)
为破解腐蚀难题,研究者们在致力于提升材料强度的同时,也在不断寻找提升材料抗蚀性能的方法。 借助 AI,他们已经取得了一定的进展,如对高温下合金的腐蚀机制进行了预测,对钢铁的大气腐蚀速率和钢筋混凝土的环境腐蚀进行了分析,并能够用卷积神经网络 (CNN) 从图像中判断材料的腐蚀形式。
然而,机器学习模型的输入数据多为数值数据。但在金属材料的加工和分析中,除了 pH 值、测试温度等数值数据,还有材料类型等分类数据及热处理过程、测试方法等文本数据。传统的机器学习模型无法对所有数据进行彻底读取和分析,预测准确率较低。
为此,德国马克思普朗克铁研究所 (MPIE, Max-Planck-Institut für Eisenforschung) 将深度神经网络 (DNN) 和自然语言处理 (NLP) 相结合开发了进程感知 DNN。 这一模型可以将数值数据和文本数据结合处理,其准确率较其他模型提升了 15%。
同时他们将金属的物理化学特性转换为描述符,构建了特征变换 DNN, 可以用于预测训练集中不存在的元素对抗蚀性能的影响。这项研究已于 2023 年 8 月发表于《Science Advances》,标题为「Enhancing corrosion-resistant alloy design through natural language processing and deep learning」。
论文链接:
https://www.science.org/doi/10.1126/sciadv.adg7992
进程感知 DNN
模型设计
本研究数据集为 5 类 769 种合金的点蚀电位,数据集中包括数值数据、分类数据及文本数据。其中,数值数据被直接输入模型中,分类数据通过顺序编号转为数值输入模型,而文本型数据则通过 NLP 架构处理后输入模型。
NLP 架构主要分为三个部分,包括词汇标记、向量化和向量序列的处理。
词汇标记过程中,每个词汇被一个特定的整型数字 (integer token) 替换。通过词汇标记,一个词组或句子就被转换为一个整型向量 (integer vector)。
词汇标记之后,虽然文本数据转换成了数值,但数值之间没有任何关联,无法承载原文的语义。因此,整型向量会经过向量化转换为 n 维浮点型向量。在训练过程中, 每个词汇的权重被不断优化。训练完成后,向量间的接近度则对应着它们的语义相似性。
最后,n 维浮点型向量通过长短期记忆递归神经网络 (LSTM) 转换为单一向量,进入输入层。LSTM 可以通过门函数,识别词汇间的长期依赖性。因此,LSTM 可以从给定语句中找出关键的相关词汇,将语句中最重要的部分传递给 DNN 的输入层。
A:NLP 数据处理工作流
B:进程感知 DNN 模型示意图
训练及验证
训练之后,研究者对模型的绝对平均误差进行了汇总。进程感知 DNN 的平均绝对误差约 150 mV,较简单 DNN 降低了 20 mV。预测点蚀电位和实际点蚀电位之间的 R2 为 0.78 ± 0.06, 较简单 DNN 的 0.61 ± 0.04 更高。上述结果说明,在对文本数据进行分析之后,进程感知 DNN 的性能优于简单 DNN 模型。
A:训练及验证过程中的平均绝对误差,其中红线为简单 DNN 模型的平均绝对误差;
B:进程感知 DNN 与简单 DNN 模型的结果对比。
合金组分优化
为了对比进程感知 DNN 与简单 DNN 在合金组分优化过程中的差异,研究者从相似的合金组分开始,用相同的学习率,利用两种模型分别对合金组分进行了优化。
A&B:铁基合金优化结果;
C&D:Ni-Cr-Mo 合金优化结果;
E&F:Al-Cr 合金优化结果;
G&H:高墒合金优化结果。
图中可以看到,两种模型对铁基合金和 FeCrNiCo 高墒合金的优化结果存在部分的相似性,但对其他两种合金的优化结果差异很大。 首先,进程感知 DNN 预测 Mo 元素含量增加,会显著提高铁基合金和 Ni-Cr-Mo 合金的点蚀电位。其次,进程感知 DNN 认为在 Ni-Cr-Mo 合金中,间隙氮和间隙碳可以提升合金的点蚀电位。最后,在 Al-Cr 合金中,Cu 元素也有利于点蚀电位的提升。这些都是简单 DNN 所忽视的。
特征变换 DNN
模型设计
通过合金组分特征化函数「WenAlloys」,合金的组分信息还可以被分解为一系列原子、物理及化学特性,并变换为不同的描述符,作为 DNN 模型的输入值。
其中 ci、ri、Xi 及 Ec,i 分别代表原子分数、原子半径、泡利电负性、元素结合能。
训练及验证
A:模型训练及验证过程中的误差曲线;
B:训练之后预测点蚀电位和实际点蚀电位的回归曲线;
C:特征变换 DNN 及简单 DNN 的结果对比。
训练后,特征变换 DNN 的平均绝对误差约 168 mV,R2 为 0.66,性能较简单 DNN 模型略有提升。
特征变换 DNN 对抗蚀机制的分析
从五类合金中各选出一种进行特征变换,之后输入模型中进行优化。基于优化曲线,输入特征可以被分为两类。一类特征曲线在优化过程中变化显著,超出了训练集中的预期;另一类特征在优化过程中只有微小的变化。
图中是 4 个优化过程中发生显著变化的特征,这意味着这些特征可能是提升合金点蚀电位的重要参数。
特征变换 DNN 对 Al-Cu-Sc-Zr 合金的预测
由于特征变换 DNN 的输入中只有组分的原子、物理及化学特征,因此它可以对训练集中不存在的元素进行预测。
在多种合金中,Sc 和 Zr 元素都展现出了对抗蚀性能的提升。因此,研究团队利用特征变换 DNN 对这两种元素对 Al-Cu 合金的影响进行了分析。
如图所示,随着 Zr 和 Sc 元素含量的增加,合金的点蚀电位不断提升,说明合金的抗蚀性能有所提高。这一结果验证了特征变换 DNN 对新元素的预测能力。
上述结果说明,将 NLP 与 DNN 结合之后,模型能够读取有关合金加工和测试方法的文本数据, 因此较传统的 DNN 模型性能更好,并能够发现简单 DNN 所忽略的元素对合金抗蚀性能的影响。而特征变换 DNN 则可以从合金的原子、物理及化学性质出发, 对训练集中不存在的元素的性能进行预测。
腐蚀:沉默的金属杀手
2009 年,世界腐蚀组织 (WCO) 将每年的 4 月 24 日确立为世界腐蚀日,以提升公众对腐蚀的认知。作为一种常见的化学现象,腐蚀存在于我们生活中的每个角落。无论是厨房的各种用具,还是家用的各类电器,还有横跨海陆空的的交通工具,乃至独具设计的各种建筑物,都饱受腐蚀的困扰。可以说,有金属的地方就有腐蚀。
金属腐蚀包括化学腐蚀和电化学腐蚀,其中电化学腐蚀的发生更为普遍,危害更大。电化学腐蚀是指两种金属在电解质溶液中形成回路,构成原电池,导致活泼金属被腐蚀的现象。常见的电化学腐蚀包括均匀腐蚀、点蚀、应力腐蚀、间隙腐蚀等。其中,非均匀腐蚀尤其是点蚀等不易被发现的腐蚀形式,对金属的危害更大,极易造成事故。
2013 年 11 月 22 日,山东省青岛市的输油管路由于长期处于高氯和干湿交替环境下,管壁腐蚀减薄,最终发生破裂,导致原油泄漏。之后的清理抢修过程中, 由于现场操作不当,导致原油爆燃,最终造成 62 人死亡,163 人受伤。
腐蚀往往难以察觉,因此避免腐蚀事故需要定期的人工检查和抢修,耗费大量的人力物力。现在,在 AI 的帮助下,我们可以对合金的组成进行优化,找到抗蚀性能更好的材料。 同时,数字化的腐蚀监测系统也正投入使用,帮助我们迅速定位腐蚀电位,让「沉默的杀手」不再沉默。
参考链接:
[1] http://impact.nace.org/documents/Nace-International-Report.pdf
[2] https://whatispiping.com/corrosion/?expand_article=1
[3] https://www.gov.cn/govweb/jrzg/2014-01/11/content_2564654.htm#:
本文首发于 HyperAI 超神经微信公众平台~
相关文章:

AI「反腐」,德国马普所结合 NLP 和 DNN 开发抗蚀合金
内容一览:在被不锈钢包围的世界中,我们可能都快忘记了腐蚀的存在。然而,腐蚀存在于生活中的方方面面。无论是锈迹斑斑的钢钉,老化漏液的电线,还是失去光泽的汽车,这一切的发生都与腐蚀有关。据统计…...

9-AJAX-2综合案例
AJAX-综合案例 目录 案例-图书管理图片上传案例-网站换肤案例-个人信息设置 学习目标 今天主要就是练,巩固 axios 的使用 完成案例-图书管理系统(增删改查)经典业务掌握图片上传的思路完成案例-网站换肤并实现图片地址缓存完成案例-个人信…...

力扣:86. 分隔链表(Python3)
题目: 给你一个链表的头节点 head 和一个特定值 x ,请你对链表进行分隔,使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。 你应当 保留 两个分区中每个节点的初始相对位置。 来源:力扣(LeetCode)…...

联合教育部高等学校科学研究发展中心,阿依瓦科技创新教育专项正式发布!
7 月 24 日,教育部科技发展中心官网发布了《中国高校产学研创新基金-阿依瓦科技创新教育专项申请指南》。 针对高校在人工智能、智能制造、智慧校园、大数据等领域科研和教研的创新研究,教育部高等学校科学研究发展中心与阿依瓦(北京)技术有…...

Ubuntu入门05——磁盘管理与备份压缩
1.检查磁盘空间占用情况 2.统计目录或文件所占磁盘空间大小 3.压缩 3.1 zip、unzip和zipinfo 运行时发现上面命令不成功,换成: (将文件lkw放入压缩文件lkw01.zip中) sudo zip -m lkw01.zip lkw 解压文件: 实操&…...

[github-100天机器学习]day4+5+6 Logistic regression
https://github.com/MLEveryday/100-Days-Of-ML-Code/blob/master/README.md 逻辑回归 逻辑回归用来处理不同的分类问题,这里的目的是预测当前被观察的对象属于哪个组。会给你提供一个离散的二进制输出结果,一个简单例子:判断一个人是否会在…...
【菜鸡学艺–Vue2–001】模板语法声明式渲染
【菜鸡学艺–Vue2–001】模板语法&声明式渲染 🦖我是Sam9029,一个前端 Sam9029的CSDN博客主页:Sam9029的博客_CSDN博客-JS学习,CSS学习,Vue-2领域博主 **🐱🐉🐱🐉恭喜你,若此文你认为写…...

LabVIEW开发感应电机在线匝间短路故障诊断系统
LabVIEW开发感应电机在线匝间短路故障诊断系统 工业中使用的超过85%的电动机是三相感应电动机。它们因其可靠性、设计便利性、高性能和过载能力而被广泛用于不同的应用,例如制造、加工、电力系统、运输等。无论它们的能力如何,它们都被认为是现代工业学…...
Deepin / UOS 安装自带的Qt
Deepin / UOS 安装自带的Qt 安装Qt版本可从官网下载也可以使用Deepin / UOS 自己维护的Qt版本,好处是针对Deepin/UOS系统进行了针对性的优化,比如QtCreator的界面和系统UI保持一致。 查询Qt版本及是否安装 sudo apt policy qtbase5-devsudo apt polic…...

vite+vue3+element-plus
vitevue3element-plus 1.开始 npm create vitelatest app -- --template vuenpm installlnpm run dev2.引入element-ui npm install element-plus修改main.js import ElementPlus from element-plus import element-plus/dist/index.css createApp(App).use(ElementPlus).m…...

uni-app 之 tabBar 底部切换按钮
uni-app 之 tabBar 底部切换按钮 1693289945724.png {"pages": [ //pages数组中第一项表示应用启动页,参考:https://uniapp.dcloud.io/collocation/pages{"path": "pages/home/home","style": {"navigatio…...

VSCode 配置 C 语言编程环境
目录 一、下载 mingw64 二、配置环境变量 三、三个配置文件 四、格式化代码 1、安装插件 2、保存时自动格式化 3、左 { 不换行 上了两年大学,都还没花心思去搭建 C 语言编程环境,惭愧,惭愧。 一、下载 mingw64 mingw64 是著名的 C/C…...

LeetCode 热题 100——找到字符串中所有字母异位词(滑动窗口)
题目链接 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 题目解析 该题目的意思简而言之就是说,从s字符串中寻找与p字符串含有相同字符(次数和种类均相同)的子串,并且将他们的首字符下标集合进数组中进行返回。 滑动窗口解…...

uniapp从零到一的学习商城实战
涵盖的功能: 安装开发工具HBuilder:HBuilderX-高效极客技巧 创建项目步骤: 1.右键-项目: 2.选择vue2和默认模板: 3.完整的项目目录: 微信开发者工具调试: 1.安装微信开发者工具 2.打开…...
应广单片机实现跑马灯
应广单片机处处体现其mini的特性,非常适合做各种方案开发,特别是点灯,什么跑马灯,氛围灯,遥控灯,感应灯,拍拍灯等,用应广都OK。 跑马灯是基础中的基础,我搭了一个框架&am…...

关于el-input和el-select宽度不一致问题解决
1. 情景一 单列布局 对于上图这种情况,只需要给el-select加上style"width: 100%"即可,如下: <el-select v-model"fjForm.region" placeholder"请选择阀门类型" style"width: 100%"><el-o…...

【Unity3D赛车游戏优化篇】【八】汽车实现镜头的流畅跟随,以及不同角度的切换
👨💻个人主页:元宇宙-秩沅 👨💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨💻 本文由 秩沅 原创 👨💻 收录于专栏:Uni…...
VScode连接远程JupyterNotebook显示点云ply文件
1. remote ssh的配置文件config中添加 Host Jupyter-ServerHostName <IP>ForwardX11 yesForwardX11Trusted yesForwardAgent yesUser <Username> 2. 在远程服务器的.sshd_config中把X11forward的开关打开为yes 3. 在home文件夹中更改.bashrc,加入以下…...

python安装wind10
一、下载: 官网:Python Releases for Windows | Python.org 二、安装 双击下载的安装程序文件。这将打开安装向导。安装界面图下方两个框的" Use admin privileges wheninstalling py. exe和” Add python. exe to PATH"都要勾选,一定要勾选!一定要勾选…...
uni-app 中 swiper 轮播图高度自适应
方法一 1、首先 swiper 标签的宽度是 width: 100% 2、swiper 标签存在默认高度是 height: 150px ;高度无法实现由内容撑开,在默认情况下,图片的高度显示总是 150px swiper 宽度 / swiper 高度 原图宽度 / 原图高度 swiper 高度 swiper …...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...

GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...

LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...