当前位置: 首页 > news >正文

AI「反腐」,德国马普所结合 NLP 和 DNN 开发抗蚀合金

内容一览:在被不锈钢包围的世界中,我们可能都快忘记了腐蚀的存在。然而,腐蚀存在于生活中的方方面面。无论是锈迹斑斑的钢钉,老化漏液的电线,还是失去光泽的汽车,这一切的发生都与腐蚀有关。据统计,全世界每年由金属腐蚀带来的经济损失超过
2.5 万亿美元,远超过其他自然灾害。其中,腐蚀在中国造成的经济损失约 3,949 亿美元,占中国 GDP 的 4.2%。正因为此,研究者们一直在探索抗蚀性能更好的合金或是金属保护膜。如今,在优化材料抗蚀性能的过程中,AI 派上了用场。

关键词:自然语言处理 深度神经网络 腐蚀

作者 | 雪菜
编辑 | 三羊

本文首发于 HyperAI 超神经微信公众平台~

据美国腐蚀工程师协会 (NACE, National Association of Corrosion Engineers) 统计,2013 年全世界由腐蚀造成的经济损失超 2.5 万亿。同时,中国也饱受腐蚀的困扰,经济损失约 3,949 亿美元,占当年 GDP 的 4.2%,较其他发达国家比例略高。

作为对比,2008 年汶川大地震造成的经济损失约 1,100 亿美元。也就是说,早在 2013 年,仅腐蚀为我国带来的经济损失,就超过了 3 个汶川大地震。
在这里插入图片描述表 1:2013 年世界各地因腐蚀造成的经济损失(单位:十亿美元)

为破解腐蚀难题,研究者们在致力于提升材料强度的同时,也在不断寻找提升材料抗蚀性能的方法。 借助 AI,他们已经取得了一定的进展,如对高温下合金的腐蚀机制进行了预测,对钢铁的大气腐蚀速率和钢筋混凝土的环境腐蚀进行了分析,并能够用卷积神经网络 (CNN) 从图像中判断材料的腐蚀形式。

然而,机器学习模型的输入数据多为数值数据。但在金属材料的加工和分析中,除了 pH 值、测试温度等数值数据,还有材料类型等分类数据及热处理过程、测试方法等文本数据。传统的机器学习模型无法对所有数据进行彻底读取和分析,预测准确率较低。

为此,德国马克思普朗克铁研究所 (MPIE, Max-Planck-Institut für Eisenforschung) 将深度神经网络 (DNN) 和自然语言处理 (NLP) 相结合开发了进程感知 DNN。 这一模型可以将数值数据和文本数据结合处理,其准确率较其他模型提升了 15%。

同时他们将金属的物理化学特性转换为描述符,构建了特征变换 DNN, 可以用于预测训练集中不存在的元素对抗蚀性能的影响。这项研究已于 2023 年 8 月发表于《Science Advances》,标题为「Enhancing corrosion-resistant alloy design through natural language processing and deep learning」。

在这里插入图片描述

相关研究已发表于《Science Advances》

论文链接:
https://www.science.org/doi/10.1126/sciadv.adg7992

进程感知 DNN

模型设计

本研究数据集为 5 类 769 种合金的点蚀电位,数据集中包括数值数据、分类数据及文本数据。其中,数值数据被直接输入模型中,分类数据通过顺序编号转为数值输入模型,而文本型数据则通过 NLP 架构处理后输入模型。

NLP 架构主要分为三个部分,包括词汇标记、向量化和向量序列的处理。

词汇标记过程中,每个词汇被一个特定的整型数字 (integer token) 替换。通过词汇标记,一个词组或句子就被转换为一个整型向量 (integer vector)。

词汇标记之后,虽然文本数据转换成了数值,但数值之间没有任何关联,无法承载原文的语义。因此,整型向量会经过向量化转换为 n 维浮点型向量。在训练过程中, 每个词汇的权重被不断优化。训练完成后,向量间的接近度则对应着它们的语义相似性。

最后,n 维浮点型向量通过长短期记忆递归神经网络 (LSTM) 转换为单一向量,进入输入层。LSTM 可以通过门函数,识别词汇间的长期依赖性。因此,LSTM 可以从给定语句中找出关键的相关词汇,将语句中最重要的部分传递给 DNN 的输入层。

在这里插入图片描述

图 1:进程感知 DNN 模型结构

A:NLP 数据处理工作流
B:进程感知 DNN 模型示意图

训练及验证

训练之后,研究者对模型的绝对平均误差进行了汇总。进程感知 DNN 的平均绝对误差约 150 mV,较简单 DNN 降低了 20 mV。预测点蚀电位和实际点蚀电位之间的 R2 为 0.78 ± 0.06, 较简单 DNN 的 0.61 ± 0.04 更高。上述结果说明,在对文本数据进行分析之后,进程感知 DNN 的性能优于简单 DNN 模型。

在这里插入图片描述

图 2:进程感知 DNN 训练结果

A:训练及验证过程中的平均绝对误差,其中红线为简单 DNN 模型的平均绝对误差;
B:进程感知 DNN 与简单 DNN 模型的结果对比。

合金组分优化

为了对比进程感知 DNN 与简单 DNN 在合金组分优化过程中的差异,研究者从相似的合金组分开始,用相同的学习率,利用两种模型分别对合金组分进行了优化。

在这里插入图片描述

图 3:组分优化结果

A&B:铁基合金优化结果;
C&D:Ni-Cr-Mo 合金优化结果;
E&F:Al-Cr 合金优化结果;
G&H:高墒合金优化结果。

图中可以看到,两种模型对铁基合金和 FeCrNiCo 高墒合金的优化结果存在部分的相似性,但对其他两种合金的优化结果差异很大。 首先,进程感知 DNN 预测 Mo 元素含量增加,会显著提高铁基合金和 Ni-Cr-Mo 合金的点蚀电位。其次,进程感知 DNN 认为在 Ni-Cr-Mo 合金中,间隙氮和间隙碳可以提升合金的点蚀电位。最后,在 Al-Cr 合金中,Cu 元素也有利于点蚀电位的提升。这些都是简单 DNN 所忽视的。

特征变换 DNN

模型设计

通过合金组分特征化函数「WenAlloys」,合金的组分信息还可以被分解为一系列原子、物理及化学特性,并变换为不同的描述符,作为 DNN 模型的输入值。
在这里插入图片描述

表 2:部分特征的变换结果

其中 ci、ri、Xi 及 Ec,i 分别代表原子分数、原子半径、泡利电负性、元素结合能。

训练及验证

在这里插入图片描述

图 4:特征变换 DNN 的训练结果

A:模型训练及验证过程中的误差曲线;
B:训练之后预测点蚀电位和实际点蚀电位的回归曲线;
C:特征变换 DNN 及简单 DNN 的结果对比。

训练后,特征变换 DNN 的平均绝对误差约 168 mV,R2 为 0.66,性能较简单 DNN 模型略有提升。

特征变换 DNN 对抗蚀机制的分析

从五类合金中各选出一种进行特征变换,之后输入模型中进行优化。基于优化曲线,输入特征可以被分为两类。一类特征曲线在优化过程中变化显著,超出了训练集中的预期;另一类特征在优化过程中只有微小的变化。

在这里插入图片描述

图 5:不同输入特征的优化曲线

图中是 4 个优化过程中发生显著变化的特征,这意味着这些特征可能是提升合金点蚀电位的重要参数。

特征变换 DNN 对 Al-Cu-Sc-Zr 合金的预测

由于特征变换 DNN 的输入中只有组分的原子、物理及化学特征,因此它可以对训练集中不存在的元素进行预测。

在多种合金中,Sc 和 Zr 元素都展现出了对抗蚀性能的提升。因此,研究团队利用特征变换 DNN 对这两种元素对 Al-Cu 合金的影响进行了分析。

在这里插入图片描述

图 6:特征变换 DNN 对 Al-Cu-Sc-Zr 合金的点蚀电位预测结果

如图所示,随着 Zr 和 Sc 元素含量的增加,合金的点蚀电位不断提升,说明合金的抗蚀性能有所提高。这一结果验证了特征变换 DNN 对新元素的预测能力。

上述结果说明,将 NLP 与 DNN 结合之后,模型能够读取有关合金加工和测试方法的文本数据, 因此较传统的 DNN 模型性能更好,并能够发现简单 DNN 所忽略的元素对合金抗蚀性能的影响。而特征变换 DNN 则可以从合金的原子、物理及化学性质出发, 对训练集中不存在的元素的性能进行预测。

腐蚀:沉默的金属杀手

2009 年,世界腐蚀组织 (WCO) 将每年的 4 月 24 日确立为世界腐蚀日,以提升公众对腐蚀的认知。作为一种常见的化学现象,腐蚀存在于我们生活中的每个角落。无论是厨房的各种用具,还是家用的各类电器,还有横跨海陆空的的交通工具,乃至独具设计的各种建筑物,都饱受腐蚀的困扰。可以说,有金属的地方就有腐蚀。

金属腐蚀包括化学腐蚀和电化学腐蚀,其中电化学腐蚀的发生更为普遍,危害更大。电化学腐蚀是指两种金属在电解质溶液中形成回路,构成原电池,导致活泼金属被腐蚀的现象。常见的电化学腐蚀包括均匀腐蚀、点蚀、应力腐蚀、间隙腐蚀等。其中,非均匀腐蚀尤其是点蚀等不易被发现的腐蚀形式,对金属的危害更大,极易造成事故。
在这里插入图片描述

图 7:常见的电化学腐蚀类型

2013 年 11 月 22 日,山东省青岛市的输油管路由于长期处于高氯和干湿交替环境下,管壁腐蚀减薄,最终发生破裂,导致原油泄漏。之后的清理抢修过程中, 由于现场操作不当,导致原油爆燃,最终造成 62 人死亡,163 人受伤。

腐蚀往往难以察觉,因此避免腐蚀事故需要定期的人工检查和抢修,耗费大量的人力物力。现在,在 AI 的帮助下,我们可以对合金的组成进行优化,找到抗蚀性能更好的材料。 同时,数字化的腐蚀监测系统也正投入使用,帮助我们迅速定位腐蚀电位,让「沉默的杀手」不再沉默。

参考链接:

[1] http://impact.nace.org/documents/Nace-International-Report.pdf

[2] https://whatispiping.com/corrosion/?expand_article=1

[3] https://www.gov.cn/govweb/jrzg/2014-01/11/content_2564654.htm#:

本文首发于 HyperAI 超神经微信公众平台~

相关文章:

AI「反腐」,德国马普所结合 NLP 和 DNN 开发抗蚀合金

内容一览:在被不锈钢包围的世界中,我们可能都快忘记了腐蚀的存在。然而,腐蚀存在于生活中的方方面面。无论是锈迹斑斑的钢钉,老化漏液的电线,还是失去光泽的汽车,这一切的发生都与腐蚀有关。据统计&#xf…...

9-AJAX-2综合案例

AJAX-综合案例 目录 案例-图书管理图片上传案例-网站换肤案例-个人信息设置 学习目标 今天主要就是练,巩固 axios 的使用 完成案例-图书管理系统(增删改查)经典业务掌握图片上传的思路完成案例-网站换肤并实现图片地址缓存完成案例-个人信…...

力扣:86. 分隔链表(Python3)

题目: 给你一个链表的头节点 head 和一个特定值 x ,请你对链表进行分隔,使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。 你应当 保留 两个分区中每个节点的初始相对位置。 来源:力扣(LeetCode)…...

联合教育部高等学校科学研究发展中心,阿依瓦科技创新教育专项正式发布!

7 月 24 日,教育部科技发展中心官网发布了《中国高校产学研创新基金-阿依瓦科技创新教育专项申请指南》。 针对高校在人工智能、智能制造、智慧校园、大数据等领域科研和教研的创新研究,教育部高等学校科学研究发展中心与阿依瓦(北京)技术有…...

Ubuntu入门05——磁盘管理与备份压缩

1.检查磁盘空间占用情况 2.统计目录或文件所占磁盘空间大小 3.压缩 3.1 zip、unzip和zipinfo 运行时发现上面命令不成功,换成: (将文件lkw放入压缩文件lkw01.zip中) sudo zip -m lkw01.zip lkw 解压文件: 实操&…...

[github-100天机器学习]day4+5+6 Logistic regression

https://github.com/MLEveryday/100-Days-Of-ML-Code/blob/master/README.md 逻辑回归 逻辑回归用来处理不同的分类问题,这里的目的是预测当前被观察的对象属于哪个组。会给你提供一个离散的二进制输出结果,一个简单例子:判断一个人是否会在…...

【菜鸡学艺–Vue2–001】模板语法声明式渲染

【菜鸡学艺–Vue2–001】模板语法&声明式渲染 🦖我是Sam9029,一个前端 Sam9029的CSDN博客主页:Sam9029的博客_CSDN博客-JS学习,CSS学习,Vue-2领域博主 **🐱‍🐉🐱‍🐉恭喜你,若此文你认为写…...

LabVIEW开发感应电机在线匝间短路故障诊断系统

LabVIEW开发感应电机在线匝间短路故障诊断系统 工业中使用的超过85%的电动机是三相感应电动机。它们因其可靠性、设计便利性、高性能和过载能力而被广泛用于不同的应用,例如制造、加工、电力系统、运输等。无论它们的能力如何,它们都被认为是现代工业学…...

Deepin / UOS 安装自带的Qt

Deepin / UOS 安装自带的Qt 安装Qt版本可从官网下载也可以使用Deepin / UOS 自己维护的Qt版本,好处是针对Deepin/UOS系统进行了针对性的优化,比如QtCreator的界面和系统UI保持一致。 查询Qt版本及是否安装 sudo apt policy qtbase5-devsudo apt polic…...

vite+vue3+element-plus

vitevue3element-plus 1.开始 npm create vitelatest app -- --template vuenpm installlnpm run dev2.引入element-ui npm install element-plus修改main.js import ElementPlus from element-plus import element-plus/dist/index.css createApp(App).use(ElementPlus).m…...

uni-app 之 tabBar 底部切换按钮

uni-app 之 tabBar 底部切换按钮 1693289945724.png {"pages": [ //pages数组中第一项表示应用启动页,参考:https://uniapp.dcloud.io/collocation/pages{"path": "pages/home/home","style": {"navigatio…...

VSCode 配置 C 语言编程环境

目录 一、下载 mingw64 二、配置环境变量 三、三个配置文件 四、格式化代码 1、安装插件 2、保存时自动格式化 3、左 { 不换行 上了两年大学,都还没花心思去搭建 C 语言编程环境,惭愧,惭愧。 一、下载 mingw64 mingw64 是著名的 C/C…...

LeetCode 热题 100——找到字符串中所有字母异位词(滑动窗口)

题目链接 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 题目解析 该题目的意思简而言之就是说,从s字符串中寻找与p字符串含有相同字符(次数和种类均相同)的子串,并且将他们的首字符下标集合进数组中进行返回。 滑动窗口解…...

uniapp从零到一的学习商城实战

涵盖的功能: 安装开发工具HBuilder:HBuilderX-高效极客技巧 创建项目步骤: 1.右键-项目: 2.选择vue2和默认模板: 3.完整的项目目录: 微信开发者工具调试: 1.安装微信开发者工具 2.打开…...

应广单片机实现跑马灯

应广单片机处处体现其mini的特性,非常适合做各种方案开发,特别是点灯,什么跑马灯,氛围灯,遥控灯,感应灯,拍拍灯等,用应广都OK。 跑马灯是基础中的基础,我搭了一个框架&am…...

关于el-input和el-select宽度不一致问题解决

1. 情景一 单列布局 对于上图这种情况&#xff0c;只需要给el-select加上style"width: 100%"即可&#xff0c;如下&#xff1a; <el-select v-model"fjForm.region" placeholder"请选择阀门类型" style"width: 100%"><el-o…...

【Unity3D赛车游戏优化篇】【八】汽车实现镜头的流畅跟随,以及不同角度的切换

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…...

VScode连接远程JupyterNotebook显示点云ply文件

1. remote ssh的配置文件config中添加 Host Jupyter-ServerHostName <IP>ForwardX11 yesForwardX11Trusted yesForwardAgent yesUser <Username> 2. 在远程服务器的.sshd_config中把X11forward的开关打开为yes 3. 在home文件夹中更改.bashrc&#xff0c;加入以下…...

python安装wind10

一、下载&#xff1a; 官网:Python Releases for Windows | Python.org 二、安装 双击下载的安装程序文件。这将打开安装向导。安装界面图下方两个框的" Use admin privileges wheninstalling py. exe和” Add python. exe to PATH"都要勾选,一定要勾选!一定要勾选…...

uni-app 中 swiper 轮播图高度自适应

方法一 1、首先 swiper 标签的宽度是 width: 100% 2、swiper 标签存在默认高度是 height: 150px &#xff1b;高度无法实现由内容撑开&#xff0c;在默认情况下&#xff0c;图片的高度显示总是 150px swiper 宽度 / swiper 高度 原图宽度 / 原图高度 swiper 高度 swiper …...

开源风雷CFD软件多物理场耦合接口开发路线分享!!!

本文将基于开发过程中积累的经验&#xff0c;介绍风雷如何基于preCICE开发适配器。 preCICE是一个开源的多物理场数值模拟耦合库&#xff0c;可以用于多个求解器联合求解一个复杂的多场问题&#xff0c;支持在大规模并行系统上应用&#xff0c;具有良好的并行效率。并且可以对…...

浅谈Mysql读写分离的坑以及应对的方案 | 京东云技术团队

一、主从架构 为什么我们要进行读写分离&#xff1f;个人觉得还是业务发展到一定的规模&#xff0c;驱动技术架构的改革&#xff0c;读写分离可以减轻单台服务器的压力&#xff0c;将读请求和写请求分流到不同的服务器&#xff0c;分摊单台服务的负载&#xff0c;提高可用性&a…...

最近在对接电商供应链,说说开放平台API接口

B2B电商开放平台的设计需要从以下几面去思考&#xff1a; 开放平台API接口的设计&#xff0c;主要是从功能需求的角度&#xff0c;设计满足业务需求的接口及对应的字段&#xff1b; 平台与商家之间信息的对接&#xff0c;对接的方法有哪些&#xff1f;对接过程中需要可能会遇到…...

【FusionInsight 迁移】HBase从C50迁移到6.5.1(02)C50上准备FTP Server

【FusionInsight 迁移】HBase从C50迁移到6.5.1&#xff08;02&#xff09;C50上准备FTP Server HBase从C50迁移到6.5.1&#xff08;02&#xff09;C50上准备FTP Server登录老集群FusionInsight C50的Manager准备FTP User准备FTP Server HBase从C50迁移到6.5.1&#xff08;02&am…...

Java操作符学习笔记

1、布尔类型的逻辑操作符和按位操作符 & 和 &&、|| 和 | 其实是两种操作符。在使用逻辑判断时&#xff0c;有时不希望产生短路作用&#xff0c;会对两个布尔类型值使用单个的 & 或 |运算。这让我一直将单个 & 和 | 当成时逻辑操作符的一种&#xff0c;而事…...

【STM32】学习笔记-PWR(Power Control)电源控制

PWR&#xff08;Power Control&#xff09;电源控制 PWR&#xff08;Power Control&#xff09;电源控制是一种技术或设备&#xff0c;用于控制电源的开关和输出。它通常用于电源管理和节能&#xff0c;可以通过控制电源的工作状态来延长电子设备的使用寿命&#xff0c;减少能…...

安卓 MeasureCache优化了什么?

安卓绘制原理概览_油炸板蓝根的博客-CSDN博客 搜了一下&#xff0c;全网居然没有人提过 measureCache。 在前文中提到过&#xff0c;measure的时候&#xff0c;如果命中了 measureCache&#xff0c;会跳过 onMeasure&#xff0c;同时会设置 PFLAG3_MEASURE_NEEDED_BEFORE_LAYOU…...

docker save docker export 区别

docker save用于导出镜像到文件&#xff0c;包含镜像元数据和历史信息&#xff1b;docker export用于将当前容器状态导出至文件&#xff0c;类似快照&#xff0c;所以不包含元数据及历史信息&#xff0c;体积更小&#xff0c;此外从容器快照导入时也可以重新指定标签和元数据信…...

音频基础知识

文章目录 前言一、音频基本概念1、音频的基本概念①、声音的三要素②、音量与音调③、几个基本概念④、奈奎斯特采样定律 2、数字音频①、采样②、量化③、编码④、其他相关概念<1>、采样位数<2>、通道数<3>、音频帧<4>、比特率&#xff08;码率&#…...

TensorFlow(R与Python系列第四篇)

目录 一、TensorFlow介绍 二、张量 三、有用的TensorFlow运算符 四、reduce系列函数实现约减 1-第一种理解方式&#xff1a;引入轴概念后直观可理 2-第二种理解方式&#xff1a;按张量括号层次的方式 参考&#xff1a; 一、TensorFlow介绍 TensorFlow是一个强大的用于数…...