当前位置: 首页 > news >正文

百度自研高性能ANN检索引擎,开源了

在这里插入图片描述

作者 | Puck项目组

导读

Puck是百度自研的开源ANN检索引擎。Puck开源项目包含两种百度自研的检索算法,以高召回、高准确、高吞吐为目标,适用于多种数据规模和场景。随着业务发展不断的优化和迭代,进行充分的技术开发和测试,确保了技术的可靠性和成熟度。该项目于2019年厂内开源,广泛应用于内部多条产品线,支撑万亿级数据和海量请求。在benchmark上显示,Puck在千万、亿、十亿等多个数据集上,性能优势明显。

全文2682字,预计阅读时间7分钟。

ANN全称近似最近邻检索(Approximate Nearest Neighbor),目标是从全量向量数据中寻找距离最近的TopK个向量,同时需要平衡检索效果和检索成本。自2012年AlexNet出现之后,深度学习在图像领域大放异彩,2017年 transformer的推出重构了NLP领域,基于语义的检索颠覆了传统检索领域,使得ANN技术广泛应用于搜索、推荐等多个场景,成为互联网的基础技术之一。

做为研究热点,无论学术界还是工业界,近些年都出现了许多ANN算法的创新研究和应用,包括基于分区和基于图形的索引策略、混合RAM和SSD存储以高效存储和处理超过RAM大小的大型数据集、使用加速器硬件、利用机器学习来降低原始矢量的维度,以及Spotify的ANNOY、Google的ScaNN、Facebook的Faiss和HNSW等。

01 Puck 是什么?

Puck是百度自研的高性能ANN检索引擎,名称取自经典MOBA游戏DOTA中的智力英雄-Puck,是飘逸、灵动的代表。

我们很早即投入自研近似最近邻检索算法(ANN)的研究,2017年Puck完成首次上线,2019年底内部开源,目前已广泛应用于百度内部多条产品线,随着业务发展不断的优化和迭代,进行了充分的技术研发和测试,确保了技术的领先性和成熟度。

Puck开源项目包含两种百度自研的检索算法Puck&Tinker,以高召回、高准确、高吞吐为目标,在大中小数据集上都有优异表现。在benchmark的千万、亿、十亿等多个数据集上,Puck性能优势明显,均显著超过竞品。在2021年底Nerulps举办的全球首届向量检索大赛BIGANN比赛中,Puck参加的四个项目均获得第一。

02 Puck 优势有哪些?

1、易用性:提供简单易用的API接入,尽量少的暴露参数,大部分参数使用默认即可达到良好性能。

**2、扩展性:**采用完全自研的索引结构,支持多种功能扩展,适应多种场景,项目模块划分合理,便于改造优化,可方便用户接口自行添加。

3、高性能:在benchmark的千万、亿、十亿等多个数据集上,Puck性能优势明显,均显著超过竞品。

4、可靠性:经过多年在实际大规模场景下的验证打磨,广泛应用于百度内部包括搜索、推荐等三十余条产品线,支撑万亿级索引数据和海量检索请求。

03 Puck 性能优势

Puck 在开源前,曾参加过首届国际向量检索大赛BigANN。首届国际向量检索大赛BigANN是由人工智能领域全球顶级学术会议NeurIPS发起,由微软、facebook等公司协办的全球最高水平的赛事,旨在提升大规模ANN的研究创新和生产环境中的落地应用。

图片

虽是首届大赛,但因NeurIPS的极高知名度和权威性,吸引了众多知名企业和顶尖大学的同台竞技。本届比赛已于2021年12月NeurlPS’21会议期间公布结果,Puck在参赛的四个数据集中均排名第一 。

除此之外,Puck持续地优化和迭代,以保持其在变化的业务环境中提供高效的检索性能。除了十亿数据集以外,我们构建了亿级&千万级benchmark,创建了更符合真实工业生产环境的benchmark机制和环境,Puck&Tinker在多个数据集上性能优势明显。

BIGANN-10M

图片

图片

△deep-10M和BIGANN-10M数据集上,召回率 VS QPS的性能图

更详细benchmark见:

https://github.com/baidu/puck/tree/main/ann-benchmarks

04 Puck 功能拓展

为了让 Puck 更加亲民,我们还做了多个功能的拓展,目前可以实现:

1、实时插入:支持无锁结构的实时插入,做到数据的实时更新。

2、条件查询:支持检索过程中的条件查询,从底层索引检索过程中就过滤掉不符合要求的结果,解决多路召回归并经常遇到的截断问题,更好满足组合检索的要求。

3、分布式建库:索引的构建过程支持分布式扩展,全量索引可以通过map-reduce一起建库,无需按分片build,大大加快和简化建库流程。

4、自适应参数:ANN方法检索参数众多,应用起来有不小门槛,不了解技术细节的用户并不容易找到最优参数,Puck提供参数自适应功能,在大部分情况下使用默认参数即可得到很好效果 。

05 Puck 在业务中的使用

在开源前,Puck在多个业务中已经进行了大规模的有效验证。

Puck于2017年初启动研发,2017年底首次上线,2019年百度内部开源,持续打磨至今,目前广泛应用于百度内部包括搜索、推荐等三十余条产品线,支撑万亿级索引数据和海量检索请求。

图片

△ANN检索在业务应用中的位置

Puck 开源后, 鼓励开发者之间的合作和共享,同时支持大家进行知识的分享和传播,打造活跃而广泛的生态,促进项目的高速、可持续发展,从而推动技术的创新。

Puck遵循 Apache 2.0 开源协议,尊重和保护原作者的创作权,开放使用包括商业化及二次开源。

希望大家将好的使用经验反馈给我们,如有问题可以加入【QQ群:913964818】随时咨询。

同时,欢迎大家成为社区贡献者,积极参与开源贡献,解决自身诉求、提升个人成长的同时得到正向激励。

在你因为参与开源而得到回报的时候,你也在影响着开源领域的发展,促进开源领域向更加广阔的方向奔涌而去。

BigANN比赛详情:

https://big-ann-benchmarks.com/neurips21.html

BigANN比赛结果:

https://github.com/harsha-simhadri/big-ann-benchmarks/blob/main/neurips21/t1_t2/README.md#results-for-t1

Puck开源地址:

https://github.com/baidu/puck

——END——

推荐阅读

存储方案作为产品——Midgard探索

百度垂类离线计算系统发展历程

度加剪辑App的MMKV应用优化实践

百度工程师浅析解码策略

百度工程师浅析强化学

相关文章:

百度自研高性能ANN检索引擎,开源了

作者 | Puck项目组 导读 Puck是百度自研的开源ANN检索引擎。Puck开源项目包含两种百度自研的检索算法,以高召回、高准确、高吞吐为目标,适用于多种数据规模和场景。随着业务发展不断的优化和迭代,进行充分的技术开发和测试,确保了…...

golang遍历map的方法

在Go语言中,可以使用range关键字来遍历一个map。range关键字会返回两个值:key和value。 以下是遍历map的示例代码: package main import "fmt" func main() { myMap : map[string]int{ "apple": 1, "banana…...

如何让Android平台像网络摄像机一样实现GB28181前端设备接入?

技术背景 好多开发者在做国标对接的时候,首先想到的是IPC(网络摄像头),通过参数化配置,接入到国标平台,实现媒体数据的按需查看等操作。 像执法记录仪等智能终端,跑在Android平台,…...

文盘Rust -- 生命周期问题引发的 static hashmap 锁 | 京东云技术团队

2021年上半年,撸了个rust cli开发的框架,基本上把交互模式,子命令提示这些cli该有的常用功能做进去了。项目地址:https://github.com/jiashiwen/interactcli-rs。 春节以前看到axum已经0.4.x了,于是想看看能不能用rus…...

SpringMVC入门篇

目录 1.SpringMVC工作流程 2.SpringMVC核心组件 2.1 DispatcherServlet 2.2 HandlerMapping 2.3 Handler 2.4 HandlerAdapter 2.5 ViewResolver 2.6 View 3.SpringMVC的入门 3.1 添加相关依赖 3.2 创建Spring-mvc.xml 3.3 配置web.xml 3.4 效果演示 4.静态资源处…...

面经:安卓学习笔记

文章目录 1. Android系统架构2. Activity2.0 定义2.1 生命周期2.2 生命状态2.3 启动模式 3. Service3.1 定义3.2 两种启动方式3.3 生命周期3.4 跨进程service3.5 IntentService 4. BroadCastReceiver4.1 概念4.2 组成4.3 广播接收器的分类4.4 生命周期4.5 静态注册和动态注册 5…...

Java设计模式:四、行为型模式-06:观察者模式

文章目录 一、定义:观察者模式二、模拟场景:观察者模式2.1 观察者模式2.2 引入依赖2.3 工程结构2.4 模拟摇号2.4.1 摇号服务接口2.4.2 摇号返回结果类 三、违背方案:观察者模式3.0 引入依赖3.1 工程结构3.2 添加摇号接口和实现3.2.1 摇号服务…...

vscode中讨厌的蓝色波浪线的去除小trick和原理

问题描述 不小心“设置同步”时和远程电脑的合并(merge)了,然后就出现了这个问题!烦死了!!! 大概是这个样子: 解决办法 站在了巨人的肩膀上,在下图位置输入这样一行参数&…...

开发工具——IDE安装 / IDEA子module依赖导入失败编译提示xx找不到符号 / IDEA在Git提交时卡顿

近期换了工作电脑,公司的IT团队不够给力,不能复制电脑系统,所以又到了需要重装IDE配置开发环境的时候了;在安装和导入Java编译器IDEA的时候遇到一些"棘手"问题,这里整理下解决方法以备不时之需; …...

AcWing 787:归并排序

【题目来源】https://www.acwing.com/problem/content/789/【题目描述】 给定你一个长度为 n 的整数数列。 请你使用归并排序对这个数列按照从小到大进行排序。 并将排好序的数列按顺序输出。【输入格式】 输入共两行,第一行包含整数 n。 第二行包含 n 个整数&#…...

SeamlessM4T—Massively Multilingual Multimodal Machine Translation

本文是LLM系列的文章,针对《SeamlessM4T—Massively Multilingual & Multimodal Machine Translation》的翻译。 SeamlessM4T:大规模语言多模态机器翻译 摘要1 引言2 多模态翻译的社会技术维度2.12.22.3 3 SeamlessAlign:自动创建语音对…...

Python数据分析-Numpy

Numpy 个人笔记,仅供参考,谢谢 导入 import numpy import numpy as np from numpy import *Numpy数组对象 引入 # 让列表1 a [1,2,3,4],b [4,5,6,7] [x1 for x in a] # 实现ab a b > [1,2,3,4,5,6,7,8] [x y for (x,y) in zip(a,b)] -------…...

【真题解析】系统集成项目管理工程师 2023 年上半年真题卷(案例分析)

本文为系统集成项目管理工程师考试(软考) 2023 年上半年真题(全国卷),包含答案与详细解析。考试共分为两科,成绩均 ≥45 即可通过考试: 综合知识(选择题 75 道,75分)案例分析(问答题 4 道,75分)案例分析(问答题*4)试题一试题二试题三试题四案例分析(问答题*4) …...

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间)

一、SH for Glossy transport 1.Diffuse PRT回顾 上篇我们介绍了PRT,并以Diffuse的BRDF作为例子分析了预计算的部分,包括Lighting和Light transport,如上图所示。 包括我们还提到了SH,可以用SH的有限阶近似拟合球面函数&#xff…...

金蝶云星空二开,公有云执行SQL

功能背景; 金蝶公有云执行sql工具,因官方为云部署 用户无法连接数据库增删改查 天梯维护网页仅支持增删改操作 二开单据已支持根据sql动态生成单据体 与sql可视化界面操作一致 功能实现及场景: 1.可用于公有云执行sql类操作 2.私有云部署&am…...

JAVA String 二维的字符串数组 String[][]

String[][] 表示一个二维的字符串数组,也可以称为字符串矩阵。它是由多个一维的字符串数组组成的,每个一维数组都表示矩阵中的一行。 在 Java 中,可以使用如下方式声明和初始化一个二维字符串数组: String[][] matrix new Strin…...

【Unity3D赛车游戏优化篇】【九】Unity中如何让汽车丝滑漂移?

👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏:Uni…...

el-dialog设置高度、使用resetFields清除表单项无效问题

初学者容易踩坑的的el-dialog、el-form问题 1. el-dialog设置高度2. el-form中表单项对不齐3. 使用resetFields清除表单项无效 1. el-dialog设置高度 在el-dialog中里面添加一个div设置固定高度&#xff0c;或者限制最小的高度。 <el-dialogtitle"选择图标"v-mod…...

MySql切换到达梦数据库,各种问题解决记录

参考官方文档&#xff1a; https://eco.dameng.com/document/dm/zh-cn/sql-dev/practice-func.html 1. 关键字导致的报错&#xff1a;如ref,comment,top,domain等 Error -2007: 第 1 行, 第 117 列[ref]附近出现错误: 语法分析出错解决方案&#xff1a;修改关键字即可 2. 查…...

2023开学礼山东财经大学《乡村振兴战略下传统村落文化旅游设计》许少辉新财经图书馆

2023开学礼山东财经大学《乡村振兴战略下传统村落文化旅游设计》许少辉新财经图书馆...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅

目录 前言 操作系统与驱动程序 是什么&#xff0c;为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中&#xff0c;我们在使用电子设备时&#xff0c;我们所输入执行的每一条指令最终大多都会作用到硬件上&#xff0c;比如下载一款软件最终会下载到硬盘上&am…...