当前位置: 首页 > news >正文

Pytorch.tensor 相关用法

Torch.tensor.backward()方法的使用举例

理解optimizer.zero_grad(), loss.backward(), optimizer.step()的作用及原理

Autograd: 自动求导

import torcha=torch.randn(2,2) # tensor默认requires_grad=False
a=((a*3)/(a-1))
print(a.requires_grad)
print(a.grad_fn) # leaf tensor的.grad_fn属性为Noneb = torch.tensor([4.0, 3.0, 2.0], requires_grad=True)
print(b.requires_grad)
print(b.grad_fn) # leaf tensor的grad_fn属性为Nonec = (a*a).sum()
print(c.requires_grad) # 由于a.requires_grad=False,所以c.requires_grad=False
print(c.grad_fn) # 由于自变量tensor,也即a的requires_grad=False,作用在其上的运算不会被跟踪,所以c.grad_fn=Nonea.requires_grad_(True) # 通过内置requires_grad_()方法改变其requires_grad属性
print(a.requires_grad) # True
d = (a*a).sum()
print(d.requires_grad) # 由于a.requires_grad=True,所以d.requires_grad=True
print(d.grad_fn) # 由于a.requires_grad=True,所以d.grad_fn有内容# https://blog.csdn.net/wangweiwells/article/details/101223420
# 但requires_grad属性为True并不意味着可以得到对其的gradient,还要看其是否为leaf tensor
e1 = torch.rand(10, requires_grad=True) + 2
print(e1.requires_grad) # True
print(e1.is_leaf) # False,因为e是由加法运算得到的,所以不是leaf tensor,不能得到对e的梯度
# 但所有requires_grad=False的Tensor都为leaf Tensor(同时也不能得到对它们的梯度)
e2 = torch.rand(10) + 2
print(e2.requires_grad) # False
print(e2.is_leaf) # True
e3 = e2.sum()
print(e3.requires_grad) # False
print(e3.grad_fn) # None
e3.backward() # 由于e3.grad_fn=None,所以此处会报错# 评估模型等情况下,我们不需要跟踪计算历史或使用内存,此时可用torch.tensor.detach()或以下方法
with torch.no_grad():print(d.requires_grad) # Truef = (a*a).sum()print(f.requires_grad) # False

相关文章:

Pytorch.tensor 相关用法

Torch.tensor.backward()方法的使用举例 理解optimizer.zero_grad(), loss.backward(), optimizer.step()的作用及原理 Autograd: 自动求导 import torchatorch.randn(2,2) # tensor默认requires_gradFalse a((a*3)/(a-1)) print(a.requires_grad) print(a.grad_fn) # leaf …...

信维通信投资者关系活动:揭示5G创新实践,展望未来发展

信维通信于近期举办了一场面向投资者的关系活动,旨在揭示公司在5G时代的创新实践和展望未来发展计划。这场活动吸引了众多投资者和证券分析师的关注,他们期待了解信维通信在5G市场的布局和竞争优势。 在活动当天,信维通信的投资者关系部门负…...

AOP进阶-通知顺序

通知顺序 当多个切面的切入点都匹配到目标方法,目标方法运行时,多个通知都会被执行 执行顺序 不同切面类中,默认按照切面类的类名称字母排序 目标方法前的通知方法:字母排名靠前的先执行目标方法后的通知方法:字母排…...

Sui流动性质押黑客松|本周Workshop预告

Sui流动性质押黑客松正在如火如荼的报名中,Sui基金会现诚邀全球开发者前来参与,助力资产再流通。了解黑客松详情:Sui流动性质押黑客松开启报名,赢取千万美金质押和奖励! 黑客松官网:Sui Liquid Staking Ha…...

数学建模:线性与非线性优化算法

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 数学建模:线性与非线性优化算法 优化算法是指在满足一定条件下,在众多方案中或者参数中最优方案,或者参数值,以使得某个或者多个功能指标达到最优,或使得系统的某些性能指标达到最大值或者最小…...

数学建模--粒子群算法(PSO)的Python实现

目录 1.开篇提示 2.算法流程简介 3.算法核心代码 4.算法效果展示 1.开篇提示 """ 开篇提示: 这篇文章是一篇学习文章,思路和参考来自:https://blog.csdn.net/weixin_42051846/article/details/128673427?utm_mediumdistribute.pc_relevant.none-task-blog-…...

【C++】STL-函数对象-内建函数对象

0.前言 1.算术仿函数 #include <iostream> using namespace std;// STL-内建函数对象-算术仿函数 #include<functional> // 内建函数对象头文件//以下举例两个仿函数 -- negate and plus// negate 一元仿函数 取反仿函数 void test01() {negate<int>n;cout …...

Redis 教程 - Redis 基本操作

Redis 教程 - Redis 基本操作 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的内存数据库&#xff0c;它提供了键值对存储和多种数据结构的支持&#xff0c;被广泛应用于缓存、消息队列、计数器等场景。本教程将介绍 Redis 的基本操作&#xff0c;包括连接…...

FreeRTOS中断与任务之间同步(Error:..\..\FreeRTOS\portable\RVDS\ARM_CM4F\port.c,422 )

前言&#xff1a; FreeRTOS中&#xff0c;中断需要注意几点&#xff1a; 何时使用中断&#xff1b;中断服务函数&#xff08;ISR&#xff09;要处理的数据量有多大&#xff0c;通常我们希望中断的切换越快越好&#xff0c;也就是说&#xff0c;ISR尽量采用耗时较少的处理方式…...

WebRTC清晰度和流畅度

WebRTC清晰度和流畅度 flyfish WebRTC提供了4种模式DISABLED&#xff0c;MAINTAIN_FRAMERATE&#xff0c;MAINTAIN_RESOLUTION&#xff0c;BALANCED // Based on the spec in // https://w3c.github.io/webrtc-pc/#idl-def-rtcdegradationpreference. // These options are …...

华为数通方向HCIP-DataCom H12-821题库(单选题:181-200)

第181题 某管理员需要创建AS Path过滤器(ip as-path-iter),允许AS_Path中包含65001的路由通过,那么以下哪一项配置是正确的? A、​​ip as-path-filter 1 permit 65001​​ B、​​ip as-path-filter 1 permit "65001​​ C、​​ip as-path-filter 1 permit *6500…...

海康威视二次开发适配安卓电视盒子

收到一个需求&#xff0c;需要在安卓电视盒子上适配海康威视摄像头视频&#xff1a; 1.类似电视家app界面&#xff0c;左边滑动菜单显示通道列表、设置按钮&#xff0c;遥控器呼出菜单。 2.遥控器操作&#xff1a;切换视频通道、云台上下左右控制、缩放等。 3.服务器域名、用…...

NIO原理浅析(二)

IO分类 阻塞和非阻塞 阻塞IO&#xff1a;用户空间引发内核空间的系统调用&#xff0c;需要内核IO操作彻底完成之后&#xff0c;返回值才会返回到用户空间&#xff0c;执行用户的操作。阻塞指的用户空间程序的执行状态&#xff0c;用户空间程序需要等到IO操作彻底执行完毕。j…...

leetcode每日一练-第53题-最大子数组和

一、思路 动态规划 二、解题方法 使用了两个变量 maxSum 和 currentSum 来分别记录全局的最大和和当前连续子数组的和。遍历数组时&#xff0c;我们不断更新 currentSum&#xff0c;并比较是否需要更新 maxSum。最后&#xff0c;maxSum 就是最大的连续子数组和。 三、code …...

京东云接入【风险识别】接口

京东云的接入文档写的真的跟逗你玩一样&#xff0c;就给提供了一个简单的实例&#xff0c;其他的全靠自己摸索。 这篇文章描述的是激动云【风险识别接口】接入&#xff0c;也会介绍如何接入其他的一些未在文章内描述到的接口。 这里使用的是python SDK&#xff0c;先安装 pip…...

在 linux 虚拟机上安装配置 hive

目录 一 下载hive 安装包 二 解压 hive 并配置环境变量 三 配置hive 的配置文件 四 更新 guava 五 hive初始化 六 开启远程连接 七 使用datagrip 连接 hive 一 下载hive 安装包 百度网盘资源如下&#xff1a; 链接: https://pan.baidu.com/s/18jF-Qri0hc52_rtL61O0YQ?…...

作品集(陆续上传中)

智能家居---不断完善中 家居-CSDN直播 家居 语音刷抖音 --- 基于串口和adb 基于守护进程的语音刷抖音-CSDN直播 基于守护进程的语音刷抖音 海天一色项目 --- 船舶靠港零碳排加热器 FTP云盘 --- 多进程和socket FTP云盘-CSDN直播 FTP云盘...

论文解读 | 三维点云深度学习的综述

原创 | 文 BFT机器人 KITTI 是作为基准测试是自动驾驶中最具影响力的数据集之一&#xff0c;在学术界和工业界都被广泛使用。现有的三维对象检测器存在着两个限制。第一是现有方法的远程检测能力相对较差。其次&#xff0c;如何充分利用图像中的纹理信息仍然是一个开放性的问题…...

基于costas环的载波同步系统matlab性能仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ............................................................................ I_Dataroun…...

解码自我注意的魔力:深入了解其直觉和机制

一、说明 自我注意机制是现代机器学习模型中的关键组成部分&#xff0c;尤其是在处理顺序数据时。这篇博文旨在提供这种机制的详细概述&#xff0c;解释它是如何工作的&#xff0c;它的优点&#xff0c;以及它背后的数学原理。我们还将讨论它在变压器模型中的实现和多头注意力的…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...

鸿蒙(HarmonyOS5)实现跳一跳小游戏

下面我将介绍如何使用鸿蒙的ArkUI框架&#xff0c;实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...