OpenCV(十八):图像直方图
目录
1.直方图统计
2.直方图均衡化
3.直方图匹配
1.直方图统计
直方图统计是一种用于分析图像或数据的统计方法,它通过统计每个数值或像素值的频率分布来了解数据的分布情况。
在OpenCV中,可以使用函数cv::calcHist()
来计算图像的直方图。
calcHist() 函数的原型如下:
void calcHist(const Mat* images, int nimages, const int* channels,
InputArray mask, OutputArray hist, int dims,
const int* histSize, const float** ranges,
bool uniform = true, bool accumulate = false);
参数说明:
-
images: 输入图像数组,可以是单张图像或多张图像的数组。
-
nimages: 输入图像的数量。
-
channels: 要计算直方图的通道索引数组。例如,对于灰度图像,只有一个通道,因此 channels 设置为 {0};而对于彩色图像,可以指定 {0, 1, 2} 对应于 B、G、R 三个通道。
-
mask: 掩码图像,用于指定计算直方图的区域。如果不需要使用掩码,可以传入空的 Mat()。
-
hist: 输出的直方图,用于存储计算结果。
-
dims: 直方图的维度,通常为 1。
-
histSize: 直方图的大小,即每个维度的条目数量。
-
ranges: 直方图的范围,可以使用 {0, 256} 表示像素值范围为 [0, 256)。
-
uniform: 指示直方图条目是否均匀分布,默认为 true。
-
accumulate: 指示是否累积直方图,默认为 false。
下面是一个示例代码,展示如何使用cv::calcHist()函数计算图像的直方图:
#include <opencv2/opencv.hpp>
void hist(Mat image){
// 定义直方图参数
int histSize = 256; // 直方图条目数量
const int channels[1]={0};//通道索引
float range[] = { 0, 256 }; // 像素值范围
const float* histRange = { range };
bool uniform = true; // 直方图条目是否均匀分布
bool accumulate = false; // 直方图是否累积
// 计算直方图
cv::Mat hist;
cv::calcHist(&image, 1, channels, cv::Mat(), hist, 1, &histSize, &histRange, uniform, accumulate);// 绘制直方图
int histWidth = 512;
int histHeight = 400;
int binWidth = cvRound((double)histWidth / histSize);
cv::Mat histImage(histHeight, histWidth, CV_8UC4, cv::Scalar(0, 0, 0));
cv::normalize(hist, hist, 0, histImage.rows, cv::NORM_MINMAX, -1, cv::Mat());
for (int i = 1; i < histSize; ++i){
cv::line(histImage, cv::Point(binWidth * (i - 1), histHeight - cvRound(hist.at<float>(i - 1))),
cv::Point(binWidth * (i), histHeight - cvRound(hist.at<float>(i))),
cv::Scalar(255, 255, 255), 2, 8, 0);
}
// 显示直方图
cv::imwrite("/sdcard/DCIM/histImage.jpg", histImage);
}
示例代码中将原图像image转换为单通道灰度图像。然后定义了直方图的参数,包括直方图条目数量、像素值范围、均匀性和累积性。接下来使用 cv::calcHist() 函数计算了图像的直方图,存储在 hist 中。最后,通过绘制直方图数据到 histImage 中,实现了直方图的可视化。
2.直方图均衡化
直方图均衡化是一种用于增强图像对比度的图像处理技术。它通过重新分布图像像素值的频率分布来增强图像的亮度和细节。
在OpenCV中,可以使用cv::equalizeHist()函数来进行直方图均衡化。该函数的原型如下:
void equalizeHist(InputArray src, OutputArray dst);
参数说明:
-
src:需要直方图均衡化的CV 8UC1图像。
-
dst: 直方图均衡化后的输出图像,与src具有相同尺寸和数据类型
下面是一个示例代码,展示如何使用cv::equalizeHist()函数来进行直方图均衡化:
#include <opencv2/opencv.hpp>
void drawHist(Mat &hist,string name){//归一化并绘制直方图函数int histSize = 256; // 直方图条目数量// 绘制直方图int histWidth = 512;int histHeight = 400;int binWidth = cvRound((double)histWidth / histSize);cv::Mat histImage(histHeight, histWidth, CV_8UC4, cv::Scalar(0, 0, 0));cv::normalize(hist, hist, 0, histImage.rows, cv::NORM_MINMAX, -1, cv::Mat());for (int i = 1; i < histSize; ++i){cv::line(histImage, cv::Point(binWidth * (i - 1), histHeight - cvRound(hist.at<float>(i - 1))),cv::Point(binWidth * (i), histHeight - cvRound(hist.at<float>(i))),cv::Scalar(255, 255, 255), 2, 8, 0);}// 显示直方图cv::imwrite("/sdcard/DCIM/"+name+".jpg", histImage);}
void EqualImage(Mat image){//灰度化Mat gray;cvtColor(image,gray,COLOR_BGR2GRAY);//将灰度图进行直方图均衡化Mat equalImg;equalizeHist(gray,equalImg);cv::imwrite("/sdcard/DCIM/equalImg.jpg", equalImg);// 定义直方图参数int histSize = 256; // 直方图条目数量const int channels[1]={0};//通道索引float range[] = { 0, 256 }; // 像素值范围const float* histRange = { range };bool uniform = true; // 直方图条目是否均匀分布bool accumulate = false; // 直方图是否累积// 计算直方图cv::Mat hist;cv::calcHist(&equalImg, 1, channels, cv::Mat(), hist, 1, &histSize, &histRange, uniform, accumulate);drawHist(hist,"hist1");}
示例代码中将原图像image转换为单通道灰度图像,然后将灰度图进行直方图均衡化,之后定义了直方图的参数,包括直方图条目数量、像素值范围、均匀性和累积性。接下来使用 cv::calcHist() 函数计算了图像的直方图,存储在 hist 中。最后,通过绘制直方图数据到 histImage 中,实现了直方图的可视化。
3.直方图匹配
直方图匹配(Histogram Matching)是一种图像处理技术,用于将一副图像的直方图映射到另一副图像上,从而使它们的亮度分布或颜色分布相似。该技术常用于图像增强、风格转换、颜色校正等应用中。
以下是一个使用OpenCV实现直方图匹配的示例代码:
#include <opencv2/opencv.hpp>
#include <iostream>using namespace cv;
using namespace std;void drawHist(Mat &hist,string name){//归一化并绘制直方图函数int histSize = 256; // 直方图条目数量// 绘制直方图int histWidth = 512;int histHeight = 400;int binWidth = cvRound((double)histWidth / histSize);cv::Mat histImage(histHeight, histWidth, CV_8UC4, cv::Scalar(0, 0, 0));cv::normalize(hist, hist, 0, histImage.rows, cv::NORM_MINMAX, -1, cv::Mat());for (int i = 1; i < histSize; ++i){cv::line(histImage, cv::Point(binWidth * (i - 1), histHeight - cvRound(hist.at<float>(i - 1))),cv::Point(binWidth * (i), histHeight - cvRound(hist.at<float>(i))),cv::Scalar(255, 255, 255), 2, 8, 0);}// 显示直方图cv::imwrite("/sdcard/DCIM/"+name+".jpg", histImage);}
void Histogram_matching(Mat img1,Mat img2){Mat hist1,hist2;//计算两张图像直方图const int channels[1]={0};float inRanges[2]={0,255};const float *ranges[1]={inRanges};const int bins[1]={256};calcHist(&img1,1,channels,Mat(),hist1,1,bins,ranges);calcHist(&img2,1,channels,Mat(),hist2,1,bins,ranges);//归一化两张图像的直方图drawHist(hist1,"hist1");drawHist(hist2,"hist2");//计算两张图像直方图的累计概率float hist1_cdf[256]={hist1.at<float>(0)};float hist2_cdf[256]={hist2.at<float>(0)};for(int i=1;i<256;i++){hist1_cdf[i]=hist1_cdf[i-1]+hist1.at<float>(i);hist2_cdf[i]=hist2_cdf[i-1]+hist1.at<float>(i);}//构建累积概率误差矩阵float diff_cdf[256][256];for(int i=0; i<256; i++){for(int j=0; j<256; j++){diff_cdf[i][j] = fabs(hist1_cdf[i] - hist2_cdf[j]);}}uchar lutone[256];for(int i=0;i<256;i++){//查找源灰度级为i的映射灰度//和i的累积概率差值最小的规定化灰度float min=diff_cdf[i][0];int index=0;//寻找累积概率误差矩阵中每一行中的最小值for(int j=1;j<256;j++){if(min>diff_cdf[i][j]){min=diff_cdf[i][j];index=j;}}lutone[i]=index;}//生成LUT映射表Mat lut(1,256,CV_8UC1,lutone);Mat result,hist3;LUT(img1,lut,result);imwrite("/sdcard/DCIM/result.png",result);calcHist(&result,1,channels,Mat(),hist3,1,bins,ranges);drawHist(hist3,"hist3");}
示例代码:计算原始图像和目标图像的直方图,归一化直方图,计算累计直方图,构建累积概率误差矩阵,根据最小差值构建映射表,最后将原始图像的灰度级根据映射表调整为目标图像的灰度级。下面是原始图像和直方图匹配后图片,可以看出直方图匹配后的图片使得图像中的细节更加清晰可见。
原图 直方图匹配的结果
相关文章:

OpenCV(十八):图像直方图
目录 1.直方图统计 2.直方图均衡化 3.直方图匹配 1.直方图统计 直方图统计是一种用于分析图像或数据的统计方法,它通过统计每个数值或像素值的频率分布来了解数据的分布情况。 在OpenCV中,可以使用函数cv::calcHist()来计算图像的直方图。 calcHist(…...

mac pro 查看隐藏文件夹
在Mac上查看隐藏文件夹可以使用以下方法: 使用终端: 打开终端应用程序,位于“应用程序”文件夹的“实用工具”子文件夹中。 在终端中,输入以下命令,然后按回车键: defaults write com.apple.finder AppleS…...

软件测试/测试开发丨Selenium 高级定位 Xpath
点此获取更多相关资料 本文为霍格沃兹测试开发学社学员学习笔记分享 原文链接:https://ceshiren.com/t/topic/27036 一、xpath 基本概念 XPATH是一门在XML文档中查找信息的语言 XPATH使用路径表达式在XML文档中进行导航 XPATH的应用非常广泛,可以用于UI自…...

各类注意力机制Attention——可变形注意力
目录 《Attention is all you need 》稀疏Attention残差Attention通道注意力空间注意力时间注意力可变形注意力 《Attention is all you need 》 稀疏Attention 残差Attention 通道注意力 空间注意力 时间注意力 实际上序列类任务也属于时间注意力,比如transformer…...

桥接模式:连接抽象与实现
欢迎来到设计模式系列的第八篇文章!在之前的几篇文章中,我们已经学习了许多常见的设计模式,今天我们将继续探讨另一个重要的设计模式——桥接模式。 桥接模式简介 桥接模式是一种结构型设计模式,它主要用于将抽象部分与实现部分…...

同步推送?苹果计划本月推出 iOS17和iPadOS17,你的手机支持吗?
据报道,苹果公司计划在本月推出 iOS 17 和 iPadOS 17 正式版更新。与去年不同的是,这次更新将同时发布,而不是分别发布。根据彭博社的一位消息人士马克・古尔曼的说法,苹果公司认为 iOS 17 和 iPadOS 17 的第八个测试版已经非常接…...

方案展示 | RK3588开发板Linux双摄同显方案
iTOP-RK3588开发板使用手册更新,后续资料会不断更新,不断完善,帮助用户快速入门,大大提升研发速度。 RK3588开发板载4路MIPI CAMERA摄像头接口、MIPI CSI DPHY的4.5Gbps、2.5Gops的MIPI CSI CPHY,四路同时输入…...

数据库-多表设计
概述: 项目开发中,在进行数据库表结构设计时,会根据业务需求及业务模块之间的关系,分析并设计表结构,由于业务之间相互关联,所以各个表结构之间也存在着各种联系,基本分为三种: 一对…...

一个简单的文件系统(MinixFS)实现解析
1. Minix文件系统概要 Minix file system 是 Andrew S. Tanenbaum 在 1980 年代发明的文件系统, 并随着 Minix 操作系统一起于 1987 年发布。 Linus 编写 Linux 内核第一个版本的时候, 使用的也是 Minix FS, Linux 至今依然提供了对 Minix FS 的支持。Minix FS 结构简单, 易于…...

地图投影-2亚当斯方形
说明 亚当斯方形 II 投影显示了一个方形的世界。它是 Oscar S. Adams 于 1925 年提出的两种投影之一。该投影为等角投影,但方形的四个角除外。在 Adams 最初的设计中,该投影将赤道和中央经线显示为方形的对角线。 此投影的一个有利属性是可以进行细分或…...

atcoder库中类欧(类欧几里得算法)floor_sum用法
https://atcoder.jp/contests/practice2/tasks/practice2_c 求 ∑ i 0 N − 1 f l o o r ( ( A i B ) / m ) \sum_{i 0}^{N - 1} floor((A \times i B) / m) ∑i0N−1floor((AiB)/m) 直接使用即可: ansfloor_sum(n, m, A, B); //注意顺序...

后端面试话术集锦第 十一 篇:mybatis面试话术
这是后端面试集锦第十一篇博文——mybatis面试话术❗❗❗ 1. 介绍下mybatis,说说它的优缺点是什么? Mybatis是一个半ORM(对象关系映射)的持久层框架,它内部封装了JDBC,开发时只需要关注SQL语句本身,不需要花费精力去处理加载驱动、创建连接、创建statement等繁杂的过程…...

SpringBoot运维实用篇、打包、运行、高级配置、多环境开发、日志
文章目录 SpringBoot运维实用篇YW-1.SpringBoot程序的打包与运行程序打包程序运行SpringBoot程序打包失败处理命令行启动常见问题及解决方案SpringBoot项目快速启动(Linux版) YW-2.配置高级YW-2-1.临时属性设置YW-2-2.配置文件分类YW-2-3.自定义配置文件…...

springdoc-openapi-ui 整合 knife,多模块分组,脚手架
pom文件: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.o…...

04-MySQL02
1、什么是索引下推? 索引下推(index condition pushdown )简称ICP,在Mysql5.6的版本上推出,用于优化查询。 需求: 查询users表中 "名字第一个字是张,年龄为10岁的所有记录"。 SELECT * FROM u…...

实现跨境电商测评和采退、LU卡、LU货最安全的系统方案
首先你要有一个稳定的测评环境系统,这个是做自养号退款、撸货、撸卡的基础。测评环境系统有很多,从早期的虚拟机,模拟机,云手机,VPS等等。这些系统方案先不说成本高,最重要的是成功率很低,所以一…...

软件生命周期及流程
软件生命周期: 软件生命周期(SDLC,Systems Development Life Cycle)是软件开始研制到最终被废弃不用所经历的各个阶段. 需求分析阶段--输出需求规格说明书(原型图) 测试介入的晚--回溯成本高 敏捷开发模型: 从1990年…...

nginx使用详解
文章目录 一、前言二、nginx使用详解2.1、nginx特点2.2 静态文件处理2.3 反向代理2.4 负载均衡2.5 高级用法2.5.1 正则表达式匹配2.5.2 重定向 三、总结 一、前言 本文将详细介绍nginx的各个功能使用,主要包括 二、nginx使用详解 2.1、nginx特点 高性能ÿ…...

YOLOV7 添加 CBAM 注意力机制
用于学习记录 文章目录 前言一、CBAM1.1 models/common.py1.2 models/yolo.py1.3 yolov7/cfg/training/CBAM.yaml2.4 CBAM 训练结果图 前言 一、CBAM CBAM: Convolutional Block Attention Module 1.1 models/common.py class ChannelAttention(nn.Module):def __init__(sel…...

【SpringSecurity】七、SpringSecurity集成thymeleaf
文章目录 1、thymeleaf2、依赖部分3、定义Controller4、创建静态页面5、WebSecurityConfigurerAdapter6、权限相关7、当用户没有某权限时,页面不展示该按钮 1、thymeleaf 查了下读音,leaf/li:f/,叶子,前面的单词发音和时间time一…...

Go语言中的数组、切片和映射解析
目录 数组数组的声明数组循环 切片切片声明切片元素循环 映射Map的声明及初始化Map的遍历 数组 数组存放的是固定长度、相同类型的数据,而且这些存放的元素是连续的。 数组的声明 例如声明一个整形数组: array : [3]int{1, 2, 3}在类型名前加 [] 中括…...

MySql学习笔记03——DQL(数据查询)基本命令
DQL 导入数据 首先使用use database进入数据库中,然后使用命令 source D:\mysql_learning\mysql_learning\document\bjpowernode.sql注意文件名不能有双引号,命令结尾没有分号。 SQL脚本 .sql文件是SQL脚本文件,它里面的内容都是SQL语句…...

操作系统的四大特性
一、并发性 指操作系统同时运行着多个程序,这些程序宏观上是同时运行的,但微观上其实是交替运行的 补充1:并发性区别于并行性 并发是指两个或多个事件在同一时间间隔内发生,事件宏观上是同时进行的,围观上市交替进行的…...

旅游攻略APP外包开发功能
旅游攻略APP是帮助旅行者计划和享受旅行的工具,下面列出了一些常见的旅游攻略APP功能,以及在上线这类应用时需要注意的问题,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。 常见…...

Apollo在Java中的使用
本节主要讲解在普通的 Java 项目和 Spring Boot 中如何使用 Apollo。 普通 Java 项目中使用 加入 Apollo Client 的 Maven 依赖,代码如下所示。 <dependency><groupId>com.ctrip.framework.apollo</groupId><artifactId>apollo-client<…...

Elasticsearch 全文搜索引擎 ---- IK分词器
原理:分词的原理:二叉树 首先讲一下为什么要出这个文章,前面我们讲过分词方法:中文分词搜索 pscws(感兴趣的同学可以去爬楼看一下),那为什么要讲IK分词?最主要的原因是&…...

Layer 2盛夏已至,StarkNet如何实现价值跃迁?
作者|Jason Jiang Layer 2概念在2023年夏天迎来爆发。Coinbase、ConsenSys等加密巨头纷纷下场,其部署的原生L2解决方案Base、Linea在过去两个月内相继完成主网上线;被誉为L2 四大天王之一的StarkNet也在夏天顺利完成“量子跃迁”升级&#x…...

KaiwuDB 受邀亮相 2023 中国国际“软博会”
8月31日,第二十五届中国国际软件博览会(以下简称“软博会”)在天津盛大开幕。KaiwuDB 受邀亮相展会,围绕“塑造软件新生态,赋能发展新变革”主题,重点展示自研分布式多模数据库及各大行业解决方案ÿ…...

RS-485/RS-422收发器电路 DP3085 国产低成本替代MAX3085
DP3085是5V、半双工、15kV ESD 保护的 RS-485/RS-422 收发器电路,电路内部包含一路驱动器和一路接收器。 DP3085具有增强的摆率限制,助于降低输出 EMI 以及不匹配的终端连接引起的反射,实现 500kbps 的无误码数据传输。 DP3085芯片接收器输入…...

R-which函数(带有arr.ind参数)
目录 一、which()函数 二、元素位置 一、which()函数 which()函数是R语言中的一个基础函数,用于返回满足指定条件的元素的位置或索引。 语法:which(x, arr.ind FALSE, useNames TRUE) 参数: - x:一个向量、数组或矩阵&#x…...