当前位置: 首页 > news >正文

动手学深度学习(2)-3.5 图像分类数据集

文章目录

    • 引言
    • 正文
      • 图像分类数据集
        • 主要包介绍
        • 主要流程
        • 具体代码
        • 练习
    • 总结

引言

  • 这里主要是看一下如何加载数据集,并且生成批次训练的数据。
  • 最大的收获是,知道了如何在训练阶段提高模型训练的性能
    • 增加batch_size
    • 增加num_worker
    • 数据预加载

正文

图像分类数据集

主要包介绍

  • 这个模块主要是将如何加载数据集,并且生成一个迭代器,每一次访问都会俺批次生成数据。

  • 具体应用到以下几个功能:

    • torchvision.datasets:获取数据集

      • 这个包拥有很多用于计算机视觉处理的功能,这个包主要有一些公开常用的计算机的视觉数据集,比如说mnist还有fashion-mnist等。

      • 这个包中的数据集可以直接被dataloader调用,会方便很多

      • dataset这个类还可以被继承实现,制作自己的dataset类

    • transforms

      • 图像预处理还有数据增强功能专用包,可以单独使用,也可以多个功能按照顺序进行组合compose,作为一个预处理函数。
    • utils.data.DataLoader

      • 自动批量加载或训练数据的功能

主要流程

  • 在加载数据集时,需要按照如下流程进行处理:
    • 制定数据预处理的环节,并组合为完整的流程

      • 使用transform实现图片的剪裁还有重置大小等基本预处理操作
      • 将所有操作进行组合
    • 获取数据集,并转为dataset类

      • 继承或者直接使用torchvision.dataset类
    • 生成批量获取数据集dataloader加载生活器

      • 生成DataLoader实例
    • 逐批次验证数据集

具体代码

def load_data_fashion_mnist(batch_size, resize=None):  #@save"""下载Fashion-MNIST数据集,然后将其加载到内存中"""trans = [transforms.ToTensor()]if resize:trans.insert(0, transforms.Resize(resize))trans = transforms.Compose(trans)mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)return (data.DataLoader(mnist_train, batch_size, shuffle=True,num_workers=get_dataloader_workers()),data.DataLoader(mnist_test, batch_size, shuffle=False,num_workers=get_dataloader_workers()))# 逐批次遍历数据
train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:print(X.shape, X.dtype, y.shape, y.dtype)break

练习

问题一

  • 在加载训练参数的过程中,影响模型的性能的参数有哪些?

    • batch_size:表示加载到内存中的数据量,越大,所需要的内存越多,反之亦然。

    • DataLoader(num_workers = ?) :表示用于加载数据的线程数,线程越多,加载的越快,同样的需要的内存越多

问题二

  • pytorch中的数据迭代器的性能非常重要,有哪些方式可以改进它?
    • DataLoader 的 persistent_workers 参数
      • 控制在每一个训练epoch后不需要关闭或者重启数据加载工作的进程
      • persistent_worker = True
    • 使用数据预取Prefetching
      • GPU在执行任务的同时,CPU可以预先加载下一批数据
    • num_wokrer
      • 提高加载数据的进程数量,提高运算效率
    • pin_memory加速数据传输
      • pin_memory = True
      • 加速数据从CPU到GPU的过程

pytorch提供的其他的数据集

图像分类数据集

CIFAR-10/CIFAR-100: 包含 10 类(CIFAR-10)或 100 类(CIFAR-100)的小图像。
MNIST: 手写数字数据集。
Fashion-MNIST: 与 MNIST 类似,但用于衣物分类。
ImageNet: 一个大规模的图像分类数据集。
SVHN (Street View House Numbers): 用于数字识别的街景房号数据集。

目标检测和分割数据集

COCO (Common Objects in Context): 用于多种视觉任务,包括目标检测、图像分割和标注。
VOC (Pascal Visual Object Classes): 包括图像分类、目标检测和图像分割任务。
Cityscapes: 用于城市场景理解,包括语义分割和实例分割。

其他

CelebA: 用于面部属性识别的大规模人脸属性数据集。
STL-10: 用于自我监督学习和图像分类的数据集。
Omniglot: 包含多种语言的字符,用于一次学习和其他语言任务。
EMNIST: 扩展的 MNIST 数据集,包括字母和数字。

总结

  • 很多的东西,还是要自己系统地了解一下,不然很多东西都不了解,现在知道了。继续弄吧,这都是欠下的技术债。

相关文章:

动手学深度学习(2)-3.5 图像分类数据集

文章目录 引言正文图像分类数据集主要包介绍主要流程具体代码练习 总结 引言 这里主要是看一下如何加载数据集,并且生成批次训练的数据。最大的收获是,知道了如何在训练阶段提高模型训练的性能 增加batch_size增加num_worker数据预加载 正文 图像分类…...

C标准输入与标准输出——stdin,stdout

🔗 《C语言趣味教程》👈 猛戳订阅!!! ​—— 热门专栏《维生素C语言》的重制版 —— 💭 写在前面:这是一套 C 语言趣味教学专栏,目前正在火热连载中,欢迎猛戳订阅&#…...

如何将home目录空间扩充到根目录下

目录 1、查看查看磁盘使用情况2、扩容思路3、卸载并删除/home4、扩大/root逻辑卷5、扩大/文件系统6、重建/home逻辑卷7、创建/home文件系统8、将新建的文件系统挂载到/home目录下9、恢复/home并删除备份10、再次查看看磁盘存储 系统:centos7.9 1、查看查看磁盘使用…...

Ceph PG Peering数据修复

ceph数据修复 当PG完成了Peering过程后,处于Active状态的PG就可以对外提供服务了。如果该PG的各个副本上有不一致的对象,就需要进行修复。 Ceph的修复过程有两种:Recovery和Backfill。 Recovery是仅依据PG日志中的缺失记录来修复不一致的对…...

服务器上使用screen和linux的基本操作

临时换源 pip install torch1.7.1 -i https://pypi.tuna.tsinghua.edu.cn/simple some-package pip install torch1.7.1 -i http://pypi.douban.com/simple some-package临时清华源和豆瓣源 配环境的一点小问题 我们尽量是去配置能满足代码的环境,而不要想着修改…...

Kafka3.0.0版本——文件存储机制

这里写木目录标题 一、Topic 数据的存储机制1.1、Topic 数据的存储机制的概述1.2、Topic 数据的存储机制的图解1.3、Topic 数据的存储机制的文件解释 二、Topic数据的存储位置示例 一、Topic 数据的存储机制 1.1、Topic 数据的存储机制的概述 Topic是逻辑上的概念&#xff0c…...

Linux如何安装MySQL

Linux安装MySQL5.7 1、下载 官网下载地址:http://dev.mysql.com/downloads/mysql/ 2、复制下面几个文件 3、检查当前系统是否安装过mysql、检查当前mysql依赖环境、检查/tmp文件夹权限 1)检查当前系统是否安装过mysql,执行安装命令前&am…...

确保网络的安全技术介绍

防火墙技术 防火墙是隔离本地网络与外界网络的一道防御系统。通常用于内部局域网 与外部广域网之间,通过限制外部网络用户以非法手段来访问内部资源,来达到保 护内部网络的安全。根据安全规则,防火墙对任何外部网络访问内部网络的行为进 …...

机器学习练习

原文章添加链接描述...

算法通关村第十九关——最小路径和

LeetCode64. 给定一个包含非负整数的 m n 网格 grid,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。 输入:grid[[1,3,1],[1,5,1],[4,2,1]] 输出:7 解释:因为路径1→3→1→1→1的总和最小。 public int minPath…...

Linux 访问进程地址空间函数 access_process_vm

文章目录 一、源码解析二、Linux内核 用途2.1 ptrace请求2.2 进程的命令行 参考资料 一、源码解析 /*** get_task_mm - acquire a reference to the tasks mm** Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning* this kernel workthread has transiently a…...

selenium 动态爬取页面使用教程以及使用案例

Selenium 介绍 概述 Selenium是一款功能强大的自动化Web浏览器交互工具。它可以模拟真实用户在网页上的操作,例如点击、滚动、输入等等。Selenium可以爬取其他库难以爬取的网站,特别是那些需要登录或使用JavaScript的网站。Selenium可以自动地从Web页面…...

小程序中如何查看会员的积分和变更记录

​积分是会员卡的一个重要功能,可以用于激励会员消费和提升用户粘性。在小程序中,商家可以方便地查看会员卡的积分和变更记录,以便更好地了解会员的消费行为和积分变动情况。下面将介绍如何在小程序中查看会员卡的积分和变更记录。 1. 找到指…...

音视频 ffmpeg命令直播拉流推流

直播拉流 ffplay rtmp://server/live/streamName ffmpeg -i rtmp://server/live/streamName -c copy dump.flv对于不是rtmp的协议 -c copy要谨慎使用 直播推流 ffmpeg -re -i out.mp4 -c copy flvrtmp://server/live/streamName参数:-re,表示按时间戳读取文件 参…...

Python钢筋混凝土结构计算.pdf-T001-混凝土强度设计值

以下是使用Python求解上述问题的完整代码: # 输入参数 f_ck 35 # 混凝土的特征抗压强度(单位:MPa) f_cd 25 # 混凝土的强度设计值(单位:MPa) # 求解安全系数 gamma_c f_ck / f_cd # …...

长风破浪会有时,直挂云帆济沧海!(工作室年会总结)

前言 我也是有段时间没写过总结性的博客了。最近是很忙的,尤其是年会那两天,我甚至可以说这是我这辈子目前最忙的两天。但这段经历还是很值得我记录下来的,也是给后面有需要的人提供的一些建议。我个人也是第一次筹办这种大型些的活动&#x…...

(数字图像处理MATLAB+Python)第十一章图像描述与分析-第五、六节:边界描述和矩描述

文章目录 一:边界描述(1)边界链码A:概述B:边界链码改进C:程序 (2)傅里叶描绘子A:概述B:程序 二:矩描述(1)矩A:…...

Redis之bigkey问题解读

目录 什么是bigkey? bigkey引发的问题 如何查找bigkey redis-cli --bigkeys MEMORY USAGE bigKey如何删除 渐进式删除 unlink bigKey生产调优 什么是bigkey? bigkey简单来说就是存储本身的key值空间太大,或者hash,list&…...

ElementUI浅尝辄止27:Steps 步骤条

引导用户按照流程完成任务的分步导航条,可根据实际应用场景设定步骤,步骤不得少于 2 步。 1.如何使用? 设置active属性,接受一个Number,表明步骤的 index,从 0 开始。需要定宽的步骤条时,设置s…...

React 18 迁移状态逻辑至 Reducer 中

参考文章 迁移状态逻辑至 Reducer 中 对于拥有许多状态更新逻辑的组件来说,过于分散的事件处理程序可能会令人不知所措。对于这种情况,可以将组件的所有状态更新逻辑整合到一个外部函数中,这个函数叫作 reducer。 使用 reducer 整合状态逻…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集&#xff0c;单周期执行&#xff1b;低功耗、CIP 独立外设&#xff1b;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel&#xff08;原始…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...