当前位置: 首页 > news >正文

【聚类】K-Means聚类

cluster:簇

原理:

这边暂时没有时间具体介绍kmeans聚类的原理。简单来说,就是首先初始化k个簇心;然后计算所有点到簇心的欧式距离,对一个点来说,距离最短就属于那个簇;然后更新不同簇的簇心(簇内所有点的平均值,也就是簇内点的重心);循环往复,直至簇心不变达到规定的迭代次数

python实现

我们这边通过调用sklearn.cluster中的kmeans方法实现kmeans聚类

入门

原始数据的散点图

from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt# 数据
class1 = 1.5 * np.random.randn(100,2) #100个2维点,标准差1.5正态分布
class2 = 1.5*np.random.randn(100,2) + np.array([5,5])#标准正态分布平移5,5# 画出数据的散点图
plt.figure(0,dpi = 300)
plt.scatter(class1[:,0],class1[:,1],c='y',marker='*')
plt.scatter(class2[:,0],class2[:,1],c='k',marker='.')
plt.axis('off')  # 不显示坐标轴
plt.show()

kmeans聚类

#---------------------------kmeans--------------------
# 调用kmeans函数
features = np.vstack((class1,class2))
kmeans = KMeans(n_clusters=2)
kmeans .fit(features)plt.figure(1,dpi = 300)#满足聚类标签条件的行
ndx = np.where(kmeans.labels_==0)
plt.scatter(features[ndx,0],features[ndx,1],c='b',marker='*')ndx = np.where(kmeans.labels_==1)
plt.scatter(features[ndx,0],features[ndx,1],c='r',marker='.')
# 画出簇心
plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],c='g',marker='o')plt.axis('off')   # 去除画布边框
plt.show()

进一步:选择簇心k的值 

前面的数据是我们自己创建的,所以簇心k是我们自己可以定为2。但是在实际中,我们不了解数据,所以我们需要根据数据的情况确定最佳的簇心数k。

这是下面用到的数据data11_2.txt【免费】这是kmean聚类中用到的一个数据资源-CSDN文库

簇内离差平方方和与拐点法(不太好判断)

定义w是簇内的点,m_i是簇的重心。

则所有簇的簇内离差平方和的和为J_k = \sum_{i=1}^{k} \sum_{w \in G_i} ||w-m_i||^2。然后通过可视化的方法,找到拐点,认为突然变化的点就是寻找的目标点,因为继续随着k的增加,聚类效果没有大的变化

借助python中的“md = KMeans(i).fit(b),md.inertia_”实现。

import numpy as np
from sklearn.cluster import KMeans
import pylab as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文
a = np.loadtxt('data/data11_2.txt')  # 加载数
b=(a-a.min(axis=0))/(a.max(axis=0)-a.min(axis=0))  # 标准化# 求出k对应的簇内离差平均和的和
SSE = []; K = range(2, len(a)+1)
for i in K:md = KMeans(i).fit(b)SSE.append(md.inertia_)  # 它表示聚类结果的簇内平方误差和(Inertia)# 可视化
plt.figure(1)
plt.title('k值与离差平方和的关系曲线')
plt.plot(K, SSE,'*-');
# 生成想要的 x 轴刻度细化值
x_ticks = np.arange(2, 10, 1)
# 设置 x 轴刻度
plt.xticks(x_ticks)
plt.show()

通过上图可以看出k=3时,是个拐点。所有选择k=3。

轮廓系数法(十分客观)

定义样本点i的轮廓系数S_i = \frac{b_i-a_i}{max(a_i,b_i)},S_i代表样本点i的轮廓系数,a_i代表该点到簇内其他点的距离的均值;b_i分两步,首先计算该点到其他簇内点距离的平均距离,然后将最小值作为b_i。a_i表示了簇内的紧密度,b_i表示了簇间的分散度。

k个簇的总轮廓点系数定义为所有样本点轮廓系数的平均值。因此计算量大

总轮廓系数越接近1,聚类效果越好。簇内平均距离小,簇间平均距离大。

调用sklearn.metrics中的silhouette_score(轮廓分数)函数实现

#程序文件ex11_7.py
import numpy as np
import matplotlib.pyplot  as plt
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
plt.rcParams['font.sans-serif'] = ['SimHei']# 忽略警告
import warnings
# 使用过滤器来忽略特定类型的警告
warnings.filterwarnings("ignore")a = np.loadtxt('data/data11_2.txt')
b=(a-a.min(axis=0))/(a.max(axis=0)-a.min(axis=0))
S = []; K = range(2, len(a))
for i in K:md = KMeans(i).fit(b)labels = md.labels_S.append(silhouette_score(b, labels))
plt.figure(dpi = 300)
plt.title('k值与轮廓系数的关系曲线')
plt.plot(K, S,'*-'); plt.show()

综上两种方法,好像并没有什么最好的方法,离差平均和不好判断,轮廓系数又像上面的情况。感觉综合两种方法比较好 

相关文章:

【聚类】K-Means聚类

cluster:簇 原理: 这边暂时没有时间具体介绍kmeans聚类的原理。简单来说,就是首先初始化k个簇心;然后计算所有点到簇心的欧式距离,对一个点来说,距离最短就属于那个簇;然后更新不同簇的簇心&a…...

超图聚类论文阅读2:Last-step算法

超图聚类论文阅读2:Last-step算法 《使用超图模块化的社区检测算法》 《Community Detection Algorithm Using Hypergraph Modularity》 COMPLEX NETWORKS 2021, SCI 3区 具体实现源码见HyperNetX库 工作:提出了一种用于超图的社区检测算法。该算法的主要…...

React 防抖与节流用法

在React中,防抖和节流是优化性能和提升用户体验的常用技术。下面是它们的用法: 防抖(Debounce):防抖是指在某个事件触发后,等待一段时间后执行回调函数。如果在等待时间内再次触发该事件,将重新…...

发布 VectorTraits v1.0,它是 C# 下增强SIMD向量运算的类库

发布 VectorTraits v1.0, 它是C#下增强SIMD向量运算的类库 VectorTraits: SIMD Vector type traits methods (SIMD向量类型的特征方法). NuGet: https://www.nuget.org/packages/VectorTraits/1.0.0 源代码: https://github.com/zyl910/VectorTraits 用途 总所周知&#x…...

HCIA自学笔记01-冲突域

共享式网络(用同一根同轴电缆通信)中可能会出现信号冲突现象。 如图是一个10BASE5以太网,每个主机都是用同一根同轴电缆来与其它主机进行通信,因此,这里的同轴电缆又被称为共享介质,相应的网络被称为共享介…...

3D封装技术发展

长期以来,芯片制程微缩技术一直驱动着摩尔定律的延续。从1987年的1um制程到2015年的14nm制程,芯片制程迭代速度一直遵循摩尔定律的规律,即芯片上可以容纳的晶体管数目在大约每经过18个月到24个月便会增加一倍。但2015年以后,芯片制…...

探讨下live555用的编程设计模式

这个应该放到这里 7.live555mediaserver-第1阶段小结(完整对象图和思维导图) https://blog.csdn.net/yhb1206/article/details/127330771 但是想想,还是拿出来吧。 从这第1阶段就能发现,它实质用到了reactor网络编程模式。...

LeetCode 1123. Lowest Common Ancestor of Deepest Leaves【树,DFS,BFS,哈希表】1607

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...

centroen 23版本换界面了

旧版本 新版本 没有与操作系统一起打包的ISO文件了,要么先安装系统,再安装Centreon,要么用pve导入OVF文件...

Postman 调用 Microsoft Graph API (InsCode AI 创作助手)

官方配置参考网址: https://learn.microsoft.com/zh-cn/graph/use-postman 获取 Azure AD 应用程序凭据: 在 Azure AD 中注册你的应用程序,并获取客户端ID和客户端密钥。这些凭据将允许你的应用程序与 Microsoft Graph 进行身份验证和访问权限…...

MySql 游标 触发器

游标 1.什么是游标 MySQL游标是一种数据库对象,它用于在数据库查询过程中迭代访问结果集中的每一行。游标可以被看作是一个指向查询结果集的指针,通过移动游标,可以按行读取和处理结果集的数据。在MySQL中,游标可以用于在存储过程…...

浅谈数据治理中的智能数据目录

在数字化转型的战略实施中,很多企业都在搭建自己的业务、数据及人工智能的中台。在同这些企业合作和交流中,越来越体会到数据目录是中台建设的核心和基础。为了更好地提供数据服务,发挥数据价值,用户需要先理解数据和信任数据。 企…...

算法通关村第十七关:青铜挑战-贪心其实很简单

青铜挑战-贪心其实很简单 1. 难以解释的贪心算法 贪心学习法则:直接做题,不考虑贪不贪心 贪心(贪婪)算法 是指在问题尽心求解时,在每一步选择中都采取最好或者最优(最有利)的选择,从而希望能够导致结果最…...

[Vue3 博物馆管理系统] 使用Vue3、Element-plus的Layout 布局构建组图文章

系列文章目录 第一章 定制上中下(顶部菜单、底部区域、中间主区域显示)三层结构首页 第二章 使用Vue3、Element-plus菜单组件构建菜单 第三章 使用Vue3、Element-plus走马灯组件构建轮播图 第四章 使用Vue3、Element-plus tabs组件构建选项卡功能 第五章…...

【LeetCode算法系列题解】第36~40题

CONTENTS LeetCode 36. 有效的数独(中等)LeetCode 37. 解数独(困难)LeetCode 38. 外观数列(中等)LeetCode 39. 组合总和(中等)LeetCode 40. 组合总和 II(中等&#xff09…...

java+ssm+mysql电梯管理系统

项目介绍: 使用javassmmysql开发的电梯管理系统,系统包含管理员,监管员、安全员、维保员角色,功能如下: 管理员:系统用户管理(监管员、安全员、维保员);系统公告&#…...

最近读书了吗?林曦老师与你分享来自暄桐课堂的读书方法

近来,大家有在开心读书吗?对于读书,有一个很生动的说法:“无事常读书,一日是四日。若活七十年,便二百八十。”读书帮助我们超越个体生命经验的限制,此时此地的我们,也可借由书本&…...

【AI理论学习】语言模型:从Word Embedding到ELMo

语言模型:从Word Embedding到ELMo ELMo原理Bi-LM总结参考资料 本文主要介绍一种建立在LSTM基础上的ELMo预训练模型。2013年的Word2Vec及2014年的GloVe的工作中,每个词对应一个vector,对于多义词无能为力。ELMo的工作对于此,提出了…...

多功能透明屏,在智能家居领域中,有哪些功能特点?显示、连接

多功能透明屏是一种新型的显示技术,它能够在透明的表面上显示图像和视频,并且具有多种功能。 这种屏幕可以应用于各种领域,如商业广告、智能家居、教育等,为用户提供更加便捷和多样化的体验。 首先,多功能透明屏可以…...

【List篇】ArrayList 详解(含图示说明)

Java中的ArrayList是一个动态数组,可以自动扩展容量以适应数据的添加和删除。它可以用来存储各种类型的数据,例如String,Integer,Boolean等。ArrayList实现了List接口,可以进行常见的List操作,例如添加、插…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

docker详细操作--未完待续

docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

HTML 列表、表格、表单

1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求&#xff…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...

Ubuntu系统多网卡多相机IP设置方法

目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机,交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息,系统版本:Ubuntu22.04.5 LTS;内核版本…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下&#xf…...