【聚类】K-Means聚类
cluster:簇
原理:
这边暂时没有时间具体介绍kmeans聚类的原理。简单来说,就是首先初始化k个簇心;然后计算所有点到簇心的欧式距离,对一个点来说,距离最短就属于那个簇;然后更新不同簇的簇心(簇内所有点的平均值,也就是簇内点的重心);循环往复,直至簇心不变或达到规定的迭代次数
python实现
我们这边通过调用sklearn.cluster中的kmeans方法实现kmeans聚类
入门
原始数据的散点图
from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt# 数据
class1 = 1.5 * np.random.randn(100,2) #100个2维点,标准差1.5正态分布
class2 = 1.5*np.random.randn(100,2) + np.array([5,5])#标准正态分布平移5,5# 画出数据的散点图
plt.figure(0,dpi = 300)
plt.scatter(class1[:,0],class1[:,1],c='y',marker='*')
plt.scatter(class2[:,0],class2[:,1],c='k',marker='.')
plt.axis('off') # 不显示坐标轴
plt.show()

kmeans聚类
#---------------------------kmeans--------------------
# 调用kmeans函数
features = np.vstack((class1,class2))
kmeans = KMeans(n_clusters=2)
kmeans .fit(features)plt.figure(1,dpi = 300)#满足聚类标签条件的行
ndx = np.where(kmeans.labels_==0)
plt.scatter(features[ndx,0],features[ndx,1],c='b',marker='*')ndx = np.where(kmeans.labels_==1)
plt.scatter(features[ndx,0],features[ndx,1],c='r',marker='.')
# 画出簇心
plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],c='g',marker='o')plt.axis('off') # 去除画布边框
plt.show()

进一步:选择簇心k的值
前面的数据是我们自己创建的,所以簇心k是我们自己可以定为2。但是在实际中,我们不了解数据,所以我们需要根据数据的情况确定最佳的簇心数k。
这是下面用到的数据data11_2.txt【免费】这是kmean聚类中用到的一个数据资源-CSDN文库
簇内离差平方方和与拐点法(不太好判断)
定义是簇内的点,
是簇的重心。
则所有簇的簇内离差平方和的和为。然后通过可视化的方法,找到拐点,认为突然变化的点就是寻找的目标点,因为继续随着k的增加,聚类效果没有大的变化
借助python中的“md = KMeans(i).fit(b),md.inertia_”实现。
import numpy as np
from sklearn.cluster import KMeans
import pylab as pltplt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
a = np.loadtxt('data/data11_2.txt') # 加载数
b=(a-a.min(axis=0))/(a.max(axis=0)-a.min(axis=0)) # 标准化# 求出k对应的簇内离差平均和的和
SSE = []; K = range(2, len(a)+1)
for i in K:md = KMeans(i).fit(b)SSE.append(md.inertia_) # 它表示聚类结果的簇内平方误差和(Inertia)# 可视化
plt.figure(1)
plt.title('k值与离差平方和的关系曲线')
plt.plot(K, SSE,'*-');
# 生成想要的 x 轴刻度细化值
x_ticks = np.arange(2, 10, 1)
# 设置 x 轴刻度
plt.xticks(x_ticks)
plt.show()

通过上图可以看出k=3时,是个拐点。所有选择k=3。
轮廓系数法(十分客观)
定义样本点i的轮廓系数,S_i代表样本点i的轮廓系数,a_i代表该点到簇内其他点的距离的均值;b_i分两步,首先计算该点到其他簇内点距离的平均距离,然后将最小值作为b_i。a_i表示了簇内的紧密度,b_i表示了簇间的分散度。
k个簇的总轮廓点系数定义为所有样本点轮廓系数的平均值。因此计算量大
总轮廓系数越接近1,聚类效果越好。簇内平均距离小,簇间平均距离大。
调用sklearn.metrics中的silhouette_score(轮廓分数)函数实现
#程序文件ex11_7.py
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
plt.rcParams['font.sans-serif'] = ['SimHei']# 忽略警告
import warnings
# 使用过滤器来忽略特定类型的警告
warnings.filterwarnings("ignore")a = np.loadtxt('data/data11_2.txt')
b=(a-a.min(axis=0))/(a.max(axis=0)-a.min(axis=0))
S = []; K = range(2, len(a))
for i in K:md = KMeans(i).fit(b)labels = md.labels_S.append(silhouette_score(b, labels))
plt.figure(dpi = 300)
plt.title('k值与轮廓系数的关系曲线')
plt.plot(K, S,'*-'); plt.show()

综上两种方法,好像并没有什么最好的方法,离差平均和不好判断,轮廓系数又像上面的情况。感觉综合两种方法比较好
相关文章:
【聚类】K-Means聚类
cluster:簇 原理: 这边暂时没有时间具体介绍kmeans聚类的原理。简单来说,就是首先初始化k个簇心;然后计算所有点到簇心的欧式距离,对一个点来说,距离最短就属于那个簇;然后更新不同簇的簇心&a…...
超图聚类论文阅读2:Last-step算法
超图聚类论文阅读2:Last-step算法 《使用超图模块化的社区检测算法》 《Community Detection Algorithm Using Hypergraph Modularity》 COMPLEX NETWORKS 2021, SCI 3区 具体实现源码见HyperNetX库 工作:提出了一种用于超图的社区检测算法。该算法的主要…...
React 防抖与节流用法
在React中,防抖和节流是优化性能和提升用户体验的常用技术。下面是它们的用法: 防抖(Debounce):防抖是指在某个事件触发后,等待一段时间后执行回调函数。如果在等待时间内再次触发该事件,将重新…...
发布 VectorTraits v1.0,它是 C# 下增强SIMD向量运算的类库
发布 VectorTraits v1.0, 它是C#下增强SIMD向量运算的类库 VectorTraits: SIMD Vector type traits methods (SIMD向量类型的特征方法). NuGet: https://www.nuget.org/packages/VectorTraits/1.0.0 源代码: https://github.com/zyl910/VectorTraits 用途 总所周知&#x…...
HCIA自学笔记01-冲突域
共享式网络(用同一根同轴电缆通信)中可能会出现信号冲突现象。 如图是一个10BASE5以太网,每个主机都是用同一根同轴电缆来与其它主机进行通信,因此,这里的同轴电缆又被称为共享介质,相应的网络被称为共享介…...
3D封装技术发展
长期以来,芯片制程微缩技术一直驱动着摩尔定律的延续。从1987年的1um制程到2015年的14nm制程,芯片制程迭代速度一直遵循摩尔定律的规律,即芯片上可以容纳的晶体管数目在大约每经过18个月到24个月便会增加一倍。但2015年以后,芯片制…...
探讨下live555用的编程设计模式
这个应该放到这里 7.live555mediaserver-第1阶段小结(完整对象图和思维导图) https://blog.csdn.net/yhb1206/article/details/127330771 但是想想,还是拿出来吧。 从这第1阶段就能发现,它实质用到了reactor网络编程模式。...
LeetCode 1123. Lowest Common Ancestor of Deepest Leaves【树,DFS,BFS,哈希表】1607
本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章…...
centroen 23版本换界面了
旧版本 新版本 没有与操作系统一起打包的ISO文件了,要么先安装系统,再安装Centreon,要么用pve导入OVF文件...
Postman 调用 Microsoft Graph API (InsCode AI 创作助手)
官方配置参考网址: https://learn.microsoft.com/zh-cn/graph/use-postman 获取 Azure AD 应用程序凭据: 在 Azure AD 中注册你的应用程序,并获取客户端ID和客户端密钥。这些凭据将允许你的应用程序与 Microsoft Graph 进行身份验证和访问权限…...
MySql 游标 触发器
游标 1.什么是游标 MySQL游标是一种数据库对象,它用于在数据库查询过程中迭代访问结果集中的每一行。游标可以被看作是一个指向查询结果集的指针,通过移动游标,可以按行读取和处理结果集的数据。在MySQL中,游标可以用于在存储过程…...
浅谈数据治理中的智能数据目录
在数字化转型的战略实施中,很多企业都在搭建自己的业务、数据及人工智能的中台。在同这些企业合作和交流中,越来越体会到数据目录是中台建设的核心和基础。为了更好地提供数据服务,发挥数据价值,用户需要先理解数据和信任数据。 企…...
算法通关村第十七关:青铜挑战-贪心其实很简单
青铜挑战-贪心其实很简单 1. 难以解释的贪心算法 贪心学习法则:直接做题,不考虑贪不贪心 贪心(贪婪)算法 是指在问题尽心求解时,在每一步选择中都采取最好或者最优(最有利)的选择,从而希望能够导致结果最…...
[Vue3 博物馆管理系统] 使用Vue3、Element-plus的Layout 布局构建组图文章
系列文章目录 第一章 定制上中下(顶部菜单、底部区域、中间主区域显示)三层结构首页 第二章 使用Vue3、Element-plus菜单组件构建菜单 第三章 使用Vue3、Element-plus走马灯组件构建轮播图 第四章 使用Vue3、Element-plus tabs组件构建选项卡功能 第五章…...
【LeetCode算法系列题解】第36~40题
CONTENTS LeetCode 36. 有效的数独(中等)LeetCode 37. 解数独(困难)LeetCode 38. 外观数列(中等)LeetCode 39. 组合总和(中等)LeetCode 40. 组合总和 II(中等)…...
java+ssm+mysql电梯管理系统
项目介绍: 使用javassmmysql开发的电梯管理系统,系统包含管理员,监管员、安全员、维保员角色,功能如下: 管理员:系统用户管理(监管员、安全员、维保员);系统公告&#…...
最近读书了吗?林曦老师与你分享来自暄桐课堂的读书方法
近来,大家有在开心读书吗?对于读书,有一个很生动的说法:“无事常读书,一日是四日。若活七十年,便二百八十。”读书帮助我们超越个体生命经验的限制,此时此地的我们,也可借由书本&…...
【AI理论学习】语言模型:从Word Embedding到ELMo
语言模型:从Word Embedding到ELMo ELMo原理Bi-LM总结参考资料 本文主要介绍一种建立在LSTM基础上的ELMo预训练模型。2013年的Word2Vec及2014年的GloVe的工作中,每个词对应一个vector,对于多义词无能为力。ELMo的工作对于此,提出了…...
多功能透明屏,在智能家居领域中,有哪些功能特点?显示、连接
多功能透明屏是一种新型的显示技术,它能够在透明的表面上显示图像和视频,并且具有多种功能。 这种屏幕可以应用于各种领域,如商业广告、智能家居、教育等,为用户提供更加便捷和多样化的体验。 首先,多功能透明屏可以…...
【List篇】ArrayList 详解(含图示说明)
Java中的ArrayList是一个动态数组,可以自动扩展容量以适应数据的添加和删除。它可以用来存储各种类型的数据,例如String,Integer,Boolean等。ArrayList实现了List接口,可以进行常见的List操作,例如添加、插…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
