当前位置: 首页 > news >正文

LeetCode 1123. Lowest Common Ancestor of Deepest Leaves【树,DFS,BFS,哈希表】1607

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

给你一个有根节点 root 的二叉树,返回它 最深的叶节点的最近公共祖先

回想一下:

  • 叶节点 是二叉树中没有子节点的节点
  • 树的根节点的 深度0,如果某一节点的深度为 d,那它的子节点的深度就是 d+1
  • 如果我们假定 A 是一组节点 S最近公共祖先S 中的每个节点都在以 A 为根节点的子树中,且 A 的深度达到此条件下可能的最大值。

示例 1:

输入:root = [3,5,1,6,2,0,8,null,null,7,4]
输出:[2,7,4]
解释:我们返回值为 2 的节点,在图中用黄色标记。
在图中用蓝色标记的是树的最深的节点。
注意,节点 608 也是叶节点,但是它们的深度是 2 ,而节点 74 的深度是 3

示例 2:

输入:root = [1]
输出:[1]
解释:根节点是树中最深的节点,它是它本身的最近公共祖先。

示例 3:

输入:root = [0,1,3,null,2]
输出:[2]
解释:树中最深的叶节点是 2 ,最近公共祖先是它自己。

提示:

  • 树中的节点数将在 [1, 1000] 的范围内。
  • 0 <= Node.val <= 1000
  • 每个节点的值都是 独一无二 的。

注意: 本题与力扣 865 重复:https://leetcode-cn.com/problems/smallest-subtree-with-all-the-deepest-nodes/


解法1 递归


看上图(示例 1),这棵树的节点 3 , 5 , 2 3,5,2 3,5,2 都是最深叶节点 7 , 4 7,4 7,4 的公共祖先,但只有节点 2 2 2 是最近的公共祖先。

如果我们要找的节点只在左子树中,那么最近公共祖先也必然只在左子树中。对于本题,如果左子树的最大深度比右子树的大,那么最深叶结点就只在左子树中,所以最近公共祖先也只在左子树中。反过来说,如果右子树的最大深度大于左子树,那么最深叶结点就只在右子树中,所以最近公共祖先也只在右子树中。

如果左右子树的最大深度一样呢?当前节点一定是最近公共祖先吗?不一定。比如节点 1 1 1 的左右子树最深叶节点 0 , 8 0,8 0,8 的深度都是 2 2 2 ,但该深度并不是全局最大深度,所以节点 1 1 1 并不能是答案。

根据以上讨论,正确做法如下:

  • 递归这棵二叉树,同时维护全局最大深度 maxDepth \textit{maxDepth} maxDepth
  • 在「」的时候往下传 d e p t h depth depth ,用来表示当前节点的深度
  • 在「」的时候往上传当前子树最深叶节点的深度
  • 设左子树最深叶节点的深度为 leftMaxDepth \textit{leftMaxDepth} leftMaxDepth ,右子树最深叶节点的深度为 rightMaxDepth \textit{rightMaxDepth} rightMaxDepth 。如果 leftMaxDepth = rightMaxDepth = maxDepth \textit{leftMaxDepth}=\textit{rightMaxDepth}=\textit{maxDepth} leftMaxDepth=rightMaxDepth=maxDepth ,那么更新答案为当前节点。注意这并不代表我们找到了答案,如果后面发现了更深的叶节点,那么答案还会更新。
class Solution {
public:TreeNode *lcaDeepestLeaves(TreeNode *root) {TreeNode *ans = nullptr;int max_depth = -1; // 全局最大深度function<int(TreeNode*, int)> dfs = [&](TreeNode *node, int depth) {if (node == nullptr) {max_depth = max(max_depth, depth); // 维护全局最大深度return depth;}int left_max_depth = dfs(node->left, depth + 1); // 获取左子树最深叶节点的深度int right_max_depth = dfs(node->right, depth + 1); // 获取右子树最深叶节点的深度if (left_max_depth == right_max_depth && left_max_depth == max_depth)ans = node;return max(left_max_depth, right_max_depth); // 当前子树最深叶节点的深度};dfs(root, 0);return ans;}
};

复杂度分析:

  • 时间复杂度: O ( n ) \mathcal{O}(n) O(n) 。每个节点都会恰好访问一次。
  • 空间复杂度: O ( n ) \mathcal{O}(n) O(n) 。最坏情况下,二叉树是一条链,递归需要 O(n)\mathcal{O}(n)O(n) 的栈空间。

解法2 自底向上

也可以不用全局变量,而是把每棵子树都看成是一个「子问题」,即对于每棵子树,我们需要知道:

  • 这棵子树最深叶结点的深度。这里是指叶子在这棵子树内的深度,而不是在整棵二叉树的视角下的深度。相当于这棵子树的高度
  • 这棵子树的最深叶结点的最近公共祖先 lca \textit{lca} lca

分类讨论:

  • 设子树的根节点为 n o d e node node n o d e node node 的左子树的高度为 leftHeight \textit{leftHeight} leftHeight n o d e node node 的右子树的高度为 rightHeight \textit{rightHeight} rightHeight
  • 如果 l e f t H e i g h t > r i g h t H e i g h t leftHeight>rightHeight leftHeight>rightHeight ,那么子树的高度为 leftHeight + 1 \textit{leftHeight} + 1 leftHeight+1 lca \textit{lca} lca 是左子树的 lca \textit{lca} lca
  • 如果 leftHeight < rightHeight \textit{leftHeight} < \textit{rightHeight} leftHeight<rightHeight ,那么子树的高度为 r i g h t H e i g h t + 1 rightHeight+1 rightHeight+1 l c a lca lca 是右子树的 l c a lca lca
  • 如果 leftHeight = rightHeight \textit{leftHeight} = \textit{rightHeight} leftHeight=rightHeight ,那么子树的高度为 leftHeight + 1 \textit{leftHeight} + 1 leftHeight+1 l c a lca lca 就是 n o d e node node 。反证法:如果 l c a lca lca 在左子树中,那么 l c a lca lca 不是右子树的最深叶结点的祖先,这不对;如果 l c a lca lca 在右子树中,那么 l c a lca lca 不是左子树的最深叶结点的祖先,这也不对;如果 l c a lca lca n o d e node node 的上面,那就不符合「最近」的要求。所以 l c a lca lca 只能是 n o d e node node
class Solution {pair<int, TreeNode*> dfs(TreeNode *node) {if (node == nullptr)return {0, nullptr};auto [left_height, left_lca] = dfs(node->left);auto [right_height, right_lca] = dfs(node->right);if (left_height > right_height) // 左子树更高return {left_height + 1, left_lca};if (left_height < right_height) // 右子树更高return {right_height + 1, right_lca};return {left_height + 1, node}; // 一样高}public:TreeNode *lcaDeepestLeaves(TreeNode *root) {return dfs(root).second;}
};

复杂度分析:

  • 时间复杂度: O ( n ) \mathcal{O}(n) O(n) 。每个节点都会恰好访问一次。
  • 空间复杂度: O ( n ) \mathcal{O}(n) O(n) 。最坏情况下,二叉树是一条链,递归需要 O ( n ) \mathcal{O}(n) O(n) 的栈空间。

更简洁的写法是:

class Solution {
public:int depth[1010];TreeNode* lcaDeepestLeaves(TreeNode* root) {if (root == nullptr) return nullptr;TreeNode* left = root->left, *right = root->right;TreeNode* lcaLeft = lcaDeepestLeaves(root->left), *lcaRight = lcaDeepestLeaves(root->right);int dl = left ? depth[left->val] : 0, dr = right ? depth[right->val] : 0;depth[root->val] = max(dl, dr) + 1;if (dl > dr) return lcaLeft;if (dr > dl) return lcaRight;return root;}
};

相关文章:

LeetCode 1123. Lowest Common Ancestor of Deepest Leaves【树,DFS,BFS,哈希表】1607

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…...

centroen 23版本换界面了

旧版本 新版本 没有与操作系统一起打包的ISO文件了&#xff0c;要么先安装系统&#xff0c;再安装Centreon&#xff0c;要么用pve导入OVF文件...

Postman 调用 Microsoft Graph API (InsCode AI 创作助手)

官方配置参考网址&#xff1a; https://learn.microsoft.com/zh-cn/graph/use-postman 获取 Azure AD 应用程序凭据&#xff1a; 在 Azure AD 中注册你的应用程序&#xff0c;并获取客户端ID和客户端密钥。这些凭据将允许你的应用程序与 Microsoft Graph 进行身份验证和访问权限…...

MySql 游标 触发器

游标 1.什么是游标 MySQL游标是一种数据库对象&#xff0c;它用于在数据库查询过程中迭代访问结果集中的每一行。游标可以被看作是一个指向查询结果集的指针&#xff0c;通过移动游标&#xff0c;可以按行读取和处理结果集的数据。在MySQL中&#xff0c;游标可以用于在存储过程…...

浅谈数据治理中的智能数据目录

在数字化转型的战略实施中&#xff0c;很多企业都在搭建自己的业务、数据及人工智能的中台。在同这些企业合作和交流中&#xff0c;越来越体会到数据目录是中台建设的核心和基础。为了更好地提供数据服务&#xff0c;发挥数据价值&#xff0c;用户需要先理解数据和信任数据。 企…...

算法通关村第十七关:青铜挑战-贪心其实很简单

青铜挑战-贪心其实很简单 1. 难以解释的贪心算法 贪心学习法则&#xff1a;直接做题&#xff0c;不考虑贪不贪心 贪心(贪婪)算法 是指在问题尽心求解时&#xff0c;在每一步选择中都采取最好或者最优&#xff08;最有利&#xff09;的选择&#xff0c;从而希望能够导致结果最…...

[Vue3 博物馆管理系统] 使用Vue3、Element-plus的Layout 布局构建组图文章

系列文章目录 第一章 定制上中下&#xff08;顶部菜单、底部区域、中间主区域显示&#xff09;三层结构首页 第二章 使用Vue3、Element-plus菜单组件构建菜单 第三章 使用Vue3、Element-plus走马灯组件构建轮播图 第四章 使用Vue3、Element-plus tabs组件构建选项卡功能 第五章…...

【LeetCode算法系列题解】第36~40题

CONTENTS LeetCode 36. 有效的数独&#xff08;中等&#xff09;LeetCode 37. 解数独&#xff08;困难&#xff09;LeetCode 38. 外观数列&#xff08;中等&#xff09;LeetCode 39. 组合总和&#xff08;中等&#xff09;LeetCode 40. 组合总和 II&#xff08;中等&#xff09…...

java+ssm+mysql电梯管理系统

项目介绍&#xff1a; 使用javassmmysql开发的电梯管理系统&#xff0c;系统包含管理员&#xff0c;监管员、安全员、维保员角色&#xff0c;功能如下&#xff1a; 管理员&#xff1a;系统用户管理&#xff08;监管员、安全员、维保员&#xff09;&#xff1b;系统公告&#…...

最近读书了吗?林曦老师与你分享来自暄桐课堂的读书方法

近来&#xff0c;大家有在开心读书吗&#xff1f;对于读书&#xff0c;有一个很生动的说法&#xff1a;“无事常读书&#xff0c;一日是四日。若活七十年&#xff0c;便二百八十。”读书帮助我们超越个体生命经验的限制&#xff0c;此时此地的我们&#xff0c;也可借由书本&…...

【AI理论学习】语言模型:从Word Embedding到ELMo

语言模型&#xff1a;从Word Embedding到ELMo ELMo原理Bi-LM总结参考资料 本文主要介绍一种建立在LSTM基础上的ELMo预训练模型。2013年的Word2Vec及2014年的GloVe的工作中&#xff0c;每个词对应一个vector&#xff0c;对于多义词无能为力。ELMo的工作对于此&#xff0c;提出了…...

多功能透明屏,在智能家居领域中,有哪些功能特点?显示、连接

多功能透明屏是一种新型的显示技术&#xff0c;它能够在透明的表面上显示图像和视频&#xff0c;并且具有多种功能。 这种屏幕可以应用于各种领域&#xff0c;如商业广告、智能家居、教育等&#xff0c;为用户提供更加便捷和多样化的体验。 首先&#xff0c;多功能透明屏可以…...

【List篇】ArrayList 详解(含图示说明)

Java中的ArrayList是一个动态数组&#xff0c;可以自动扩展容量以适应数据的添加和删除。它可以用来存储各种类型的数据&#xff0c;例如String&#xff0c;Integer&#xff0c;Boolean等。ArrayList实现了List接口&#xff0c;可以进行常见的List操作&#xff0c;例如添加、插…...

SSL证书只有收费的吗?有没有免费使用的?

首先明白SSL证书是什么SSL英文全称&#xff1a;英文全称: Secure Socket Layer Certificate,中文全称:安全套接字层证书。 SSL是一种由数字证书颁发机构(CA) 签发的数字证书。它用于建立安全的加密连接&#xff0c;确保通过网络传输的数据在客户端和服务器之间的安全性和完整性…...

48V轻混技术

文章目录 48V轻混技术的主要特点和优势48V轻混技术的优缺点优点&#xff1a;缺点&#xff1a; 48V轻混技术的主要特点和优势 48V轻混技术&#xff08;48V Mild Hybrid Technology&#xff09;是一种汽车动力系统技术&#xff0c;它结合了内燃机和电动机的优势&#xff0c;以提…...

机器学习基础算法--回归类型和评价分析

目录 1.数据归一化处理 2.数据标准化处理 3.Lasso回归模型 4.岭回归模型 5.评价指标计算 1.数据归一化处理 """ x的归一化的方法还是比较多的我们就选取最为基本的归一化方法 x(x-x_min)/(x_max-x_min) """ import numpy as np from sklea…...

MATLAB 软件功能简介

MATLAB 的名称源自 Matrix Laboratory,1984 年由美国 Mathworks 公司推向市场。 它是一种科学计算软件&#xff0c;专门以矩阵的形式处理数据。MATLAB 将高性能的数值计算和可 视化集成在一起&#xff0c;并提供了大量的内置函数&#xff0c;从而被广泛的应用于科学计算、控制…...

deepfm内容理解

对于CTR问题&#xff0c;被证明的最有效的提升任务表现的策略是特征组合(Feature Interaction)&#xff1b; 两个问题&#xff1a; 如何更好地学习特征组合&#xff0c;进而更加精确地描述数据的特点&#xff1b; 如何更高效的学习特征组合。 DNN局限 &#xff1a;当我们使…...

postgresql-集合运算

postgresql-集合运算 并集交集差集集合运算符的优先级 并集 create table excellent_emp( year int not null, emp_id integer not null, constraint pk_excellent_emp primary key(year,emp_id) );insert into excellent_emp values(2018,9); insert into excellent_emp value…...

[持续更新]计算机经典面试题基础篇Day2

[通用]计算机经典面试题基础篇Day2 1、单例模式是什么&#xff0c;线程安全吗 单例模式是一种设计模式&#xff0c;旨在确保一个类只有一个实例&#xff0c;并提供全局访问点。通过使用单例模式&#xff0c;可以避免多次创建相同的对象&#xff0c;节省内存资源&#xff0c;同…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...