当前位置: 首页 > news >正文

【100天精通Python】Day57:Python 数据分析_Pandas数据描述性统计,分组聚合,数据透视表和相关性分析

目录

1 描述性统计(Descriptive Statistics)

2 数据分组和聚合

3 数据透视表

4 相关性分析


1 描述性统计(Descriptive Statistics)

        描述性统计是一种用于汇总和理解数据集的方法,它提供了关于数据分布、集中趋势和离散度的信息。Pandas 提供了 describe() 方法,它可以生成各种描述性统计信息,包括均值、标准差、最小值、最大值、四分位数等。以下是详细的描述性统计示例:

首先,假设你有一个包含一些学生考试成绩的 DataFrame:

import pandas as pddata = {'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],'Math': [85, 92, 78, 88, 95],'English': [78, 85, 89, 92, 88],'Science': [90, 86, 76, 93, 89]}df = pd.DataFrame(data)# 使用 describe() 方法生成描述性统计信息
description = df.describe()# 输出结果
print(description)

输出结果将会是:

2 数据分组和聚合

        数据分组和聚合是数据分析中常用的操作,用于根据某些特征将数据分组,并对每个分组应用聚合函数,以便获得有关每个组的统计信息。在 Pandas 中,你可以使用 groupby() 方法来实现数据分组,然后使用各种聚合函数对分组后的数据进行计算。以下是详细的示例和解释:

假设你有一个包含不同城市销售数据的 DataFrame:

import pandas as pddata = {'City': ['New York', 'Los Angeles', 'Chicago', 'New York', 'Chicago', 'Los Angeles'],'Sales': [1000, 750, 800, 1200, 900, 850]}df = pd.DataFrame(data)# 使用 groupby() 方法按城市分组
grouped = df.groupby('City')# 对每个组应用聚合函数(例如,计算平均销售额)
result = grouped['Sales'].mean()# 输出结果
print(result)

使用 groupby() 方法将数据按城市分组,并对每个城市的销售数据进行聚合:

输出结果:

        在这个示例中,我们首先使用 groupby() 方法按城市分组,然后对每个城市的销售数据应用了 mean() 聚合函数。结果中包含了每个城市的平均销售额。

        你还可以应用其他聚合函数,如 sum()、max()、min() 等,以获取更多信息。例如,你可以计算每个城市的总销售额:

total_sales = grouped['Sales'].sum()

         除了单个聚合函数外,你还可以同时应用多个聚合函数,并将结果合并到一个 DataFrame 中。这可以通过 agg() 方法来实现:

import pandas as pddata = {'City': ['New York', 'Los Angeles', 'Chicago', 'New York', 'Chicago', 'Los Angeles'],'Sales': [1000, 750, 800, 1200, 900, 850]}df = pd.DataFrame(data)# 使用 groupby() 方法按城市分组
grouped = df.groupby('City')# 同时计算平均销售额和总销售额,并将结果合并到一个 DataFrame 中
result = grouped['Sales'].agg(['mean', 'sum'])# 输出结果
print(result)

输出结果:

3 数据透视表

        数据透视表是一种用于对数据进行多维度汇总和分析的工具。在 Pandas 中,你可以使用 pivot_table() 函数来创建数据透视表。下面是一个详细的数据透视表示例:

假设你有一个包含销售数据的 DataFrame:

import pandas as pddata = {'Date': ['2023-09-01', '2023-09-01', '2023-09-02', '2023-09-02', '2023-09-03'],'Product': ['A', 'B', 'A', 'B', 'A'],'Sales': [1000, 750, 1200, 800, 900]}df = pd.DataFrame(data)

现在,假设你想要创建一个数据透视表,以便查看每个产品每天的总销售额。你可以使用 pivot_table() 来实现这个目标:

# 创建数据透视表,以Date为行索引,Product为列,计算总销售额
pivot = df.pivot_table(index='Date', columns='Product', values='Sales', aggfunc='sum')# 输出结果
print(pivot)

输出结果:

        在这个示例中,我们使用了 pivot_table() 函数,将 "Date" 列作为行索引,"Product" 列作为列,并计算了每个组合的销售额之和。结果是一个数据透视表,它以日期为行,以产品为列,每个单元格中包含了对应日期和产品的销售额。

        如果某个日期没有某个产品的销售数据,相应的单元格将显示为 NaN(Not a Number)。你还可以在 aggfunc 参数中指定其他聚合函数,例如 'mean'、'max'、'min' 等,以根据你的需求生成不同类型的数据透视表。

4 相关性分析

         相关性分析是用来确定两个或多个变量之间关系的统计方法,通常用于了解它们之间的相关程度和方向。在 Pandas 中,你可以使用 corr() 方法来计算相关性系数(如 Pearson 相关系数)来衡量两个数值列之间的相关性。以下是相关性分析的详细示例和解释:

假设你有一个包含两个数值列的 DataFrame,表示学生的数学和英语成绩:

import pandas as pddata = {'Math': [85, 92, 78, 88, 95],'English': [78, 85, 89, 92, 88]}df = pd.DataFrame(data)

接下来,你可以使用 corr() 方法来计算这两个列之间的相关性:

# 使用 corr() 方法计算数学和英语成绩之间的相关性
correlation = df['Math'].corr(df['English'])# 输出结果
print("Correlation between Math and English scores:", correlation)

输出结果:

在这个示例中,我们使用了 corr() 方法计算了数学和英语成绩之间的相关性系数。相关性系数的值范围从 -1 到 1,其中:

  • 1 表示完全正相关:当一个变量增加时,另一个变量也增加,变化方向相同。
  • 0 表示无相关性:两个变量之间没有线性关系。
  • -1 表示完全负相关:当一个变量增加时,另一个变量减少,变化方向相反。

相关文章:

【100天精通Python】Day57:Python 数据分析_Pandas数据描述性统计,分组聚合,数据透视表和相关性分析

目录 1 描述性统计(Descriptive Statistics) 2 数据分组和聚合 3 数据透视表 4 相关性分析 1 描述性统计(Descriptive Statistics) 描述性统计是一种用于汇总和理解数据集的方法,它提供了关于数据分布、集中趋势和…...

Unity 切换场景后场景变暗

问题 Unity版本:2019.4.34f1c1 主场景只有UI,没有灯光,天空盒;其他场景有灯光和天空盒所有场景不烘焙主场景作为启动场景运行,切换到其他场景,场景变暗某一个场景作为启动场景运行,光影效果正…...

RabbitMQ学习笔记

1、什么是MQ? MQ全称message queue(消息队列),本质是一个队列,FIFO先进先出,是消息传送过程中保存消息的容器,多 用于分布式系统之间进行通信。 在互联网架构中,MQ是一种非常常见的…...

【C# Programming】类、构造器、静态成员

一、类 1、类的概念 类是现实世界概念的抽象:封装、继承、多态数据成员: 类中存储数据的变量成员方法: 类中操纵数据成员的函数称为成员方法对象:类的实例类定义 class X {…} var instance new X(…); 2、实例字段 C#中…...

软件层面缓存基本概念与分类

缓存 缓存基本概念(百度百科) 缓存(cache),原始意义是指访问速度比一般随机存取存储器(RAM)快的一种高速存储器,通常它不像系统主存那样使用DRAM技术,而使用昂贵但较快…...

单片机有哪些分类?

单片机有哪些分类? 1.AVR单片机-----速度快,一个时钟周期执行一条指令,而普通的51单片机需要12个时钟周期执行一条指令。当然,Atmel公司出品的AT89LP系列单片机也是一个时钟执行一条指令,但目前还未普及。AVR单片机比51单片机多…...

高阶数据结构-----三种平衡树的实现以及原理(未完成)

TreeMap和TreeSet的底层实现原理就是红黑树 一)AVL树: 1)必须是一棵搜索树:前提是二叉树,任取一个节点,它的左孩子的Key小于父亲节点的Key小于右孩子节点的Key,中序遍历是有序的,按照Key的大小进行排列,高度平衡的二叉…...

北斗高精度组合导航终端

UWB(Ultra-Wideband)、卫星定位(GNSS),以及IMU(Inertial Measurement Unit)的组合定位系统结合了多种传感器和定位技术,以提供高精度、高可靠性的位置估计。这种组合定位系统在各种应…...

低代码平台是否能替代电子表格?

在计算机技术普及之前,会计、助理或者是销售人员,都需要用纸和笔来记录和维护每一笔交易。计算机技术兴起之后,一项技术发明——电子表格的出现改变了低效的状况。电子表格的第一个版本出现在1977年,一个名为“VisiCalc”的程序。…...

qt多个信号如何关联一并处理

主要方法&#xff1a; 首先&#xff0c;需要创建一个包含自定义信号和槽的Qt类。假设要创建一个名为MyObject的类&#xff0c;并在其中定义一个自定义信号和一个槽。这个类的头文件可能如下所示&#xff1a; #ifndef MYOBJECT_H #define MYOBJECT_H#include <QObject>c…...

【python爬虫】12.建立你的爬虫大军

文章目录 前言协程是什么多协程的用法gevent库queue模块 拓展复习复习 前言 照旧来回顾上一关的知识点&#xff01;上一关我们学习如何将爬虫的结果发送邮件&#xff0c;和定时执行爬虫。 关于邮件&#xff0c;它是这样一种流程&#xff1a; 我们要用到的模块是smtplib和emai…...

2023数学建模国赛C题思路--蔬菜类商品的自动定价与补货决策

C 题 蔬菜类商品的自动定价与补货决策 在生鲜商超中&#xff0c;一般蔬菜类商品的保鲜期都比较短&#xff0c;且品相随销售时间的增加而变差&#xff0c; 大部分品种如当日未售出&#xff0c;隔日就无法再售。因此&#xff0c;商超通常会根据各商品的历史销售和需 求情况每天进…...

vue2与vue3的使用区别

1. 脚手架创建项目的区别&#xff1a; vue2: vue init webpack “项目名称”vue3: vue create “项目名称” 或者vue3一般与vite结合使用: npm create vitelatest yarn create vite2. template中结构 vue2: template下只有一个元素节点 <template><div><div…...

Apache httpd漏洞复现

文章目录 未知后缀名解析漏洞多后缀名解析漏洞启动环境漏洞复现 换行解析漏洞启动环境漏洞复现 未知后缀名解析漏洞 该漏洞与Apache、php版本无关&#xff0c;属于用户配置不当造成的解析漏洞。在有多个后缀的情况下&#xff0c;只要一个文件含有.php后缀的文件即将被识别成PHP…...

【漏洞复现】时空智友企业流程化管控系统文件上传

漏洞描述 通过时空智友该系统,可让企业实现流程的自动化、协同上提升、数据得洞察及决策得优化,来提高工作效率、管理水平及企业的竞争力。时空智友企业流程化 formservice接口处存有任意文件上传漏洞,未经认证得攻击者可利用此接口上传后门程序,可导致服务器失陷。 免责…...

elasticsearch的DSL查询文档

DSL查询分类 查询所有&#xff1a;查询出所有数据&#xff0c;一般测试用。例如&#xff1a;match_all 全文检索&#xff08;full text&#xff09;查询&#xff1a;利用分词器对用户输入内容分词&#xff0c;然后去倒排索引库中匹配。例如&#xff1a; match_query multi_ma…...

IP地址、子网掩码、网络地址、广播地址、IP网段

文章目录 IP地址IP地址分类子网掩码网络地址广播地址IP网段 本文主要讨论iPv4地址。 IP地址 实际的 IP 地址是一串32 比特的数字&#xff0c;按照 8 比特&#xff08;1 字节&#xff09;为一组分成 4 组&#xff0c;分别用十进制表示然后再用圆点隔开&#xff0c;这就是我们平…...

ffmpeg-android studio创建jni项目

一、创建native项目 1.1、选择Native C 1.2、命名项目名称 1.3、选择C标准 1.4、项目结构 1.5、app的build.gradle plugins {id com.android.application }android {compileSdk 32defaultConfig {applicationId "com.anniljing.ffmpegnative"minSdk 25targetSdk 32…...

智慧公厕是将数据、技术、业务深度融合的公共厕所敏捷化“操作系统”

文明社会的进步离不开公共设施的不断创新和提升。而在这些公共设施中&#xff0c;公共厕所一直是一个备受关注和改善的领域。近年来&#xff0c;随着智慧城市建设的推进&#xff0c;智慧公厕成为了城市管理的重要一环。智慧公厕不仅仅是为公众提供方便和舒适的便利设施&#xf…...

JVM中JAVA对象和数组内存布局

对象 数组 在Java中&#xff0c;所有的对象都是一种特殊的数组&#xff0c;它们的元素可以是基本数据类型、其他对象引用或者其他任何类型。Java对象和数组的内存布局包含以下部分&#xff1a; 1.对象头&#xff08;Object Header&#xff09; 每个Java对象都有一个对象头&am…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...