机器学习——boosting之GBDT
现在要开始重点关注名字了,名字透漏了很多信息!名字暗藏线索!
GBDT,Gradient Boosting Decision Tree: 梯度提升决策树
果然信息很丰富
梯度:意味着计算有迭代递进关系,但还不明确是怎么迭代递进的
提升:意味着前向分布式+加法模型,并且分类器之间是有相关提升的
决策树:CART决策树、C4.5、忘记名字了…
em…还是要再深挖深挖,小小的boosting,挖呀挖呀挖呀挖。。。
经过推导。。。发现,我的GBDT回归,实际就是上一篇提升树的二叉回归树…
看来可以省点儿功夫,不写代码,但可以稍微推导一下
首先,明确回归问题采用平方损失函数: L o s s ( y , f ( x ) ) = ( y − f ( x ) ) 2 Loss(y,f(x)) =(y-f(x))^2 Loss(y,f(x))=(y−f(x))2
其中,f(x) 是强分类器,且当前强分类器 f m = f m − 1 + T m ( x , θ m ) f_m = f_{m-1}+T_m(x,θ_m) fm=fm−1+Tm(x,θm)
问题来了,我们现在要求Loss最小,原本是可以直接使Loss对x求导,进而求出θ,得到强分类器的
但书上说了,有时候Loss对x求导,是无法实现的,说实话,我不知道为什么
不过,不妨碍我对GBDT进行推导
首先,梯度,是想要Loss成梯度逐步下降,那就采用让Loss在 f ( x ) = f m − 1 ( x ) f(x)=f_{m-1}(x) f(x)=fm−1(x)处进行一阶泰勒展开
则有 L o s s ( y , f ( x ) ) = L o s s ( y , f m − 1 ( x ) ) + ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ [ f ( x ) − f m − 1 ( x ) ] Loss(y,f(x)) = Loss(y,f_{m-1}(x))+\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*[f(x)-f_{m-1}(x)] Loss(y,f(x))=Loss(y,fm−1(x))+əfm−1(x)əL(y,fm−1(x))∗[f(x)−fm−1(x)]
令 f ( x ) = f m ( x ) f(x) = f_m(x) f(x)=fm(x),则有
L ( y , f m ( x ) ) = L ( y , f m − 1 ( x ) ) + ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ [ f m ( x ) − f m − 1 ( x ) ] L(y,f_m(x)) = L(y,f_{m-1}(x))+\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*[f_m(x)-f_{m-1}(x)] L(y,fm(x))=L(y,fm−1(x))+əfm−1(x)əL(y,fm−1(x))∗[fm(x)−fm−1(x)]
Δ L o s s = L ( y , f m ( x ) ) − L ( y , f m − 1 ( x ) ) = ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ [ f m ( x ) − f m − 1 ( x ) ] ΔLoss = L(y,f_m(x)) - L(y,f_{m-1}(x))=\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*[f_m(x)-f_{m-1}(x)] ΔLoss=L(y,fm(x))−L(y,fm−1(x))=əfm−1(x)əL(y,fm−1(x))∗[fm(x)−fm−1(x)]
其中 [ f m ( x ) − f m − 1 ( x ) ] = T ( x , θ m ) [f_m(x)-f_{m-1}(x)] = T(x,θ_m) [fm(x)−fm−1(x)]=T(x,θm)
要使下一次迭代时,Loss降低,则需要ΔLoss<0,那么对应的 ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ T ( x , θ m ) \frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*T(x,θ_m) əfm−1(x)əL(y,fm−1(x))∗T(x,θm)<0
那么,当 T ( x , θ m ) = − ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) T(x,θ_m)=-\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}} T(x,θm)=−əfm−1(x)əL(y,fm−1(x))时,就可以保证 ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ T ( x , θ m ) \frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*T(x,θ_m) əfm−1(x)əL(y,fm−1(x))∗T(x,θm)<0
因此, T ( x , θ m ) = − ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) = ə ( y − f m − 1 ( x ) ) 2 ə f m − 1 ( x ) T(x,θ_m)=-\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}=\frac{ə_{(y-f_{m-1}(x))^2}}{ə_{f_{m-1}(x)}} T(x,θm)=−əfm−1(x)əL(y,fm−1(x))=əfm−1(x)ə(y−fm−1(x))2
为了求解简洁美观,可以 令 L o s s 为 1 2 ( y − f ( x ) ) 2 令Loss为\frac{1}{2}(y-f(x))^2 令Loss为21(y−f(x))2
这样 T ( x , θ m ) = − ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) = 1 2 ə ( y − f m − 1 ( x ) ) 2 ə f m − 1 ( x ) = y − f m − 1 ( x ) T(x,θ_m)=-\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}=\frac{\frac{1}{2}ə_{(y-f_{m-1}(x))^2}}{ə_{f_{m-1}(x)}}=y-f_{m-1}(x) T(x,θm)=−əfm−1(x)əL(y,fm−1(x))=əfm−1(x)21ə(y−fm−1(x))2=y−fm−1(x)
哦!这不就是残差嘛 r = y − f m − 1 ( x ) r = y-f_{m-1}(x) r=y−fm−1(x) ,相当于每个新的弱分类器(准确来说,应该是基函数)都应该尽可能地去拟合残差
所以啊!!!!实际上一轮的提升树,本质上就是GBDT
不管,就先这么确定,以后打脸再说…好困
相关文章:
机器学习——boosting之GBDT
现在要开始重点关注名字了,名字透漏了很多信息!名字暗藏线索! GBDT,Gradient Boosting Decision Tree: 梯度提升决策树 果然信息很丰富 梯度:意味着计算有迭代递进关系,但还不明确是怎么迭代递进的 提升&…...

如何选择报修管理系统?报修工单管理系统有哪些功能和优势?
报修管理系统是一种能够帮助企业快速反应设备故障和异常情况,并将问题及时通知到相关人员,并对问题进行统计和分析的系统。它能够有效提高企业的工作效率,并减少人员成本的支出。那么,报修工单管理系统有哪些功能和优势呢?下面以“…...

Matlab图像处理-
有些时候,直接利用图像的灰度直方图选择阈值不是非常直观,这时,可以利用图像三个通道的直方图来进行图像分割,操作步骤如上文所示,下图为原始图片。 下图为三通道直方图。 下图将三个通道的直方图会绘制到一个图表上&a…...

数据接口工程对接BI可视化大屏(二)创建BI空间
第2章 创建BI空间 2.1 SugarBI介绍 网站地址:https://cloud.baidu.com/product/sugar.html SugarBI是百度推出的自助BI报表分析和制作可视化数据大屏的强大工具。 基于百度Echarts提供丰富的图表组件,开箱即用、零代码操作、无需SQL,5分钟即可完成数…...
Struts.xml 配置文件说明
<?xml version"1.0" encoding"UTF-8" ?> <!DOCTYPE struts PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 2.3//EN" "http://struts.apache.org/dtds/struts-2.3.dtd"> <struts> <!--…...

阿里巴巴API接口解析,实现获得商品详情
要解析阿里巴巴API接口并实现获取商品详情,你需要按照以下步骤进行操作: 了解阿里巴巴开放平台:访问阿里巴巴开放平台,并了解相关的API文档、开发者指南和规定。注册开发者账号:在阿里巴巴开放平台上注册一个开发者账…...

9.(Python数模)(分类模型一)K-means聚类
Python实现K-means聚类 K-means原理 K-means均值聚类算法作为最经典也是最基础的无标签分类学习算法。其实质就是根据两个数据点的距离去判断他们是否属于一类,对于一群点,就是类似用几个圆去框定这些点(簇),然后圆心…...

MinIO集群模式信息泄露漏洞(CVE-2023-28432)
前言:MinIO是一个用Golang开发的基于Apache License v2.0开源协议的对象存储服务。虽然轻量,却拥有着不错的性能。它兼容亚马逊S3云存储服务接口,非常适合于存储大容量非结构化的数据。该漏洞会在前台泄露用户的账户和密码。 0x00 环境配置 …...
【从零单排Golang】第十五话:用sync.Once实现懒加载的用法和坑点
在使用Golang做后端开发的工程中,我们通常需要声明一些一些配置类或服务单例等在业务逻辑层面较为底层的实例。为了节省内存或是冷启动开销,我们通常采用lazy-load懒加载的方式去初始化这些实例。初始化单例这个行为是一个非常经典的并发处理的案例&…...

常见注意力机制
注意力机制 (具有自适应性) 18年提出的一种新的 卷积注意力模块 ;对前馈卷积神经网络 是一个 简单而有效的 注意力模块 ; 因为它的 轻量级和通用性 ,可以 无缝集成到任何CNN网络 当中, 对我们来讲&…...

解决报错之org.aspectj.lang不存在
一、IDEA在使用时,可能会遇到maven依赖包明明存在,但是build或者启动时,报找不存在。 解决办法:第一时间检查Setting->Maven-Runner红圈中的√有没有选上。 二、有时候,明明依赖包存在,但是Maven页签中…...

java之SpringBoot基础篇、前后端项目、MyBatisPlus、MySQL、vue、elementUi
文章目录 前言JC-1.快速上手SpringBootJC-1-1.SpringBoot入门程序制作(一)JC-1-2.SpringBoot入门程序制作(二)JC-1-3.SpringBoot入门程序制作(三)JC-1-4.SpringBoot入门程序制作(四)…...
golang中如何判断字符串是否包含另一字符串
golang中如何判断字符串是否包含另一字符串 在Go语言中,可以使用strings.Contains()函数来判断一个字符串是否包含另一个字符串。该函数接受两个参数:要搜索的字符串和要查找的子字符串,如果子字符串存在于要搜索的字符串中,则返…...

ONNX OpenVino TensorRT MediaPipe NCNN Diffusers ComfyUI
框架 和Java生成的中间文件可以在JVM上运行一样,AI技术在具体落地应用方面,和其他软件技术一样,也需要具体的部署和实施的。既然要做部署,那就会有不同平台设备上的各种不同的部署方法和相关的部署架构工具 onnx 在训练模型时可以…...

java中使用 Integer 和 int 的 含义、使用方法 及之间的区别
学习目标: 学习目标如下: 明确 Integer 和 int 的 含义、使用方法 及之间的区别 学习内容: 一、区别: 1.Integer是int的包装类,int则是java的一种基本的数据类型; 2.Integer变量必须实例化之后才能使用&a…...
点云从入门到精通技术详解100篇-点云的特征检测
目录 前言 点云配准的研究背景 多元时间序列的相似性分析研究背景及意义 国内外研究现状...

DOM破坏绕过XSSfilter例题
目录 一、什么是DOM破坏 二、例题1 编辑 三、多层关系 1.Collection集合方式 2.标签关系 四、例题2 一、什么是DOM破坏 DOM破坏(DOM Clobbering)指的是对网页上的DOM结构进行不当的修改,导致页面行为异常、性能问题、安全风险或其他不…...
代码随想录Day_56打卡
①、两个字符串的删除操作 给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。 每步 可以删除任意一个字符串中的一个字符。 事例: 输入: word1 "sea", word2 "eat" 输出: 2 解释: 第一步将 "sea&…...

高忆管理:六连板捷荣技术或难扛“华为概念股”大旗
在本钱商场上名不见经传的捷荣技术(002855.SZ)正扛起“华为概念股”大旗。 9月6日,捷荣技术已拿下第六个连续涨停板,短短七个生意日,股价累积涨幅逾越90%。公司已连发两份股票生意异动公告。 是炒作,还是…...

「解析」YOLOv5 classify分类模板
学习深度学习有些时间了,相信很多小伙伴都已经接触 图像分类、目标检测甚至图像分割(语义分割)等算法了,相信大部分小伙伴都是从分类入门,接触各式各样的 Backbone算法开启自己的炼丹之路。 但是炼丹并非全是 Backbone,更多的是各…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...

如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
省略号和可变参数模板
本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...

mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...
用鸿蒙HarmonyOS5实现中国象棋小游戏的过程
下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...
ArcPy扩展模块的使用(3)
管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如,可以更新、修复或替换图层数据源,修改图层的符号系统,甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...