机器学习——boosting之GBDT
现在要开始重点关注名字了,名字透漏了很多信息!名字暗藏线索!
GBDT,Gradient Boosting Decision Tree: 梯度提升决策树
果然信息很丰富
梯度:意味着计算有迭代递进关系,但还不明确是怎么迭代递进的
提升:意味着前向分布式+加法模型,并且分类器之间是有相关提升的
决策树:CART决策树、C4.5、忘记名字了…
em…还是要再深挖深挖,小小的boosting,挖呀挖呀挖呀挖。。。
经过推导。。。发现,我的GBDT回归,实际就是上一篇提升树的二叉回归树…
看来可以省点儿功夫,不写代码,但可以稍微推导一下
首先,明确回归问题采用平方损失函数: L o s s ( y , f ( x ) ) = ( y − f ( x ) ) 2 Loss(y,f(x)) =(y-f(x))^2 Loss(y,f(x))=(y−f(x))2
其中,f(x) 是强分类器,且当前强分类器 f m = f m − 1 + T m ( x , θ m ) f_m = f_{m-1}+T_m(x,θ_m) fm=fm−1+Tm(x,θm)
问题来了,我们现在要求Loss最小,原本是可以直接使Loss对x求导,进而求出θ,得到强分类器的
但书上说了,有时候Loss对x求导,是无法实现的,说实话,我不知道为什么
不过,不妨碍我对GBDT进行推导
首先,梯度,是想要Loss成梯度逐步下降,那就采用让Loss在 f ( x ) = f m − 1 ( x ) f(x)=f_{m-1}(x) f(x)=fm−1(x)处进行一阶泰勒展开
则有 L o s s ( y , f ( x ) ) = L o s s ( y , f m − 1 ( x ) ) + ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ [ f ( x ) − f m − 1 ( x ) ] Loss(y,f(x)) = Loss(y,f_{m-1}(x))+\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*[f(x)-f_{m-1}(x)] Loss(y,f(x))=Loss(y,fm−1(x))+əfm−1(x)əL(y,fm−1(x))∗[f(x)−fm−1(x)]
令 f ( x ) = f m ( x ) f(x) = f_m(x) f(x)=fm(x),则有
L ( y , f m ( x ) ) = L ( y , f m − 1 ( x ) ) + ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ [ f m ( x ) − f m − 1 ( x ) ] L(y,f_m(x)) = L(y,f_{m-1}(x))+\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*[f_m(x)-f_{m-1}(x)] L(y,fm(x))=L(y,fm−1(x))+əfm−1(x)əL(y,fm−1(x))∗[fm(x)−fm−1(x)]
Δ L o s s = L ( y , f m ( x ) ) − L ( y , f m − 1 ( x ) ) = ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ [ f m ( x ) − f m − 1 ( x ) ] ΔLoss = L(y,f_m(x)) - L(y,f_{m-1}(x))=\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*[f_m(x)-f_{m-1}(x)] ΔLoss=L(y,fm(x))−L(y,fm−1(x))=əfm−1(x)əL(y,fm−1(x))∗[fm(x)−fm−1(x)]
其中 [ f m ( x ) − f m − 1 ( x ) ] = T ( x , θ m ) [f_m(x)-f_{m-1}(x)] = T(x,θ_m) [fm(x)−fm−1(x)]=T(x,θm)
要使下一次迭代时,Loss降低,则需要ΔLoss<0,那么对应的 ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ T ( x , θ m ) \frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*T(x,θ_m) əfm−1(x)əL(y,fm−1(x))∗T(x,θm)<0
那么,当 T ( x , θ m ) = − ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) T(x,θ_m)=-\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}} T(x,θm)=−əfm−1(x)əL(y,fm−1(x))时,就可以保证 ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) ∗ T ( x , θ m ) \frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}*T(x,θ_m) əfm−1(x)əL(y,fm−1(x))∗T(x,θm)<0
因此, T ( x , θ m ) = − ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) = ə ( y − f m − 1 ( x ) ) 2 ə f m − 1 ( x ) T(x,θ_m)=-\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}=\frac{ə_{(y-f_{m-1}(x))^2}}{ə_{f_{m-1}(x)}} T(x,θm)=−əfm−1(x)əL(y,fm−1(x))=əfm−1(x)ə(y−fm−1(x))2
为了求解简洁美观,可以 令 L o s s 为 1 2 ( y − f ( x ) ) 2 令Loss为\frac{1}{2}(y-f(x))^2 令Loss为21(y−f(x))2
这样 T ( x , θ m ) = − ə L ( y , f m − 1 ( x ) ) ə f m − 1 ( x ) = 1 2 ə ( y − f m − 1 ( x ) ) 2 ə f m − 1 ( x ) = y − f m − 1 ( x ) T(x,θ_m)=-\frac{ə_{L(y,f_{m-1}(x))}}{ə_{f_{m-1}(x)}}=\frac{\frac{1}{2}ə_{(y-f_{m-1}(x))^2}}{ə_{f_{m-1}(x)}}=y-f_{m-1}(x) T(x,θm)=−əfm−1(x)əL(y,fm−1(x))=əfm−1(x)21ə(y−fm−1(x))2=y−fm−1(x)
哦!这不就是残差嘛 r = y − f m − 1 ( x ) r = y-f_{m-1}(x) r=y−fm−1(x) ,相当于每个新的弱分类器(准确来说,应该是基函数)都应该尽可能地去拟合残差
所以啊!!!!实际上一轮的提升树,本质上就是GBDT
不管,就先这么确定,以后打脸再说…好困
相关文章:
机器学习——boosting之GBDT
现在要开始重点关注名字了,名字透漏了很多信息!名字暗藏线索! GBDT,Gradient Boosting Decision Tree: 梯度提升决策树 果然信息很丰富 梯度:意味着计算有迭代递进关系,但还不明确是怎么迭代递进的 提升&…...
如何选择报修管理系统?报修工单管理系统有哪些功能和优势?
报修管理系统是一种能够帮助企业快速反应设备故障和异常情况,并将问题及时通知到相关人员,并对问题进行统计和分析的系统。它能够有效提高企业的工作效率,并减少人员成本的支出。那么,报修工单管理系统有哪些功能和优势呢?下面以“…...
Matlab图像处理-
有些时候,直接利用图像的灰度直方图选择阈值不是非常直观,这时,可以利用图像三个通道的直方图来进行图像分割,操作步骤如上文所示,下图为原始图片。 下图为三通道直方图。 下图将三个通道的直方图会绘制到一个图表上&a…...
数据接口工程对接BI可视化大屏(二)创建BI空间
第2章 创建BI空间 2.1 SugarBI介绍 网站地址:https://cloud.baidu.com/product/sugar.html SugarBI是百度推出的自助BI报表分析和制作可视化数据大屏的强大工具。 基于百度Echarts提供丰富的图表组件,开箱即用、零代码操作、无需SQL,5分钟即可完成数…...
Struts.xml 配置文件说明
<?xml version"1.0" encoding"UTF-8" ?> <!DOCTYPE struts PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 2.3//EN" "http://struts.apache.org/dtds/struts-2.3.dtd"> <struts> <!--…...
阿里巴巴API接口解析,实现获得商品详情
要解析阿里巴巴API接口并实现获取商品详情,你需要按照以下步骤进行操作: 了解阿里巴巴开放平台:访问阿里巴巴开放平台,并了解相关的API文档、开发者指南和规定。注册开发者账号:在阿里巴巴开放平台上注册一个开发者账…...
9.(Python数模)(分类模型一)K-means聚类
Python实现K-means聚类 K-means原理 K-means均值聚类算法作为最经典也是最基础的无标签分类学习算法。其实质就是根据两个数据点的距离去判断他们是否属于一类,对于一群点,就是类似用几个圆去框定这些点(簇),然后圆心…...
MinIO集群模式信息泄露漏洞(CVE-2023-28432)
前言:MinIO是一个用Golang开发的基于Apache License v2.0开源协议的对象存储服务。虽然轻量,却拥有着不错的性能。它兼容亚马逊S3云存储服务接口,非常适合于存储大容量非结构化的数据。该漏洞会在前台泄露用户的账户和密码。 0x00 环境配置 …...
【从零单排Golang】第十五话:用sync.Once实现懒加载的用法和坑点
在使用Golang做后端开发的工程中,我们通常需要声明一些一些配置类或服务单例等在业务逻辑层面较为底层的实例。为了节省内存或是冷启动开销,我们通常采用lazy-load懒加载的方式去初始化这些实例。初始化单例这个行为是一个非常经典的并发处理的案例&…...
常见注意力机制
注意力机制 (具有自适应性) 18年提出的一种新的 卷积注意力模块 ;对前馈卷积神经网络 是一个 简单而有效的 注意力模块 ; 因为它的 轻量级和通用性 ,可以 无缝集成到任何CNN网络 当中, 对我们来讲&…...
解决报错之org.aspectj.lang不存在
一、IDEA在使用时,可能会遇到maven依赖包明明存在,但是build或者启动时,报找不存在。 解决办法:第一时间检查Setting->Maven-Runner红圈中的√有没有选上。 二、有时候,明明依赖包存在,但是Maven页签中…...
java之SpringBoot基础篇、前后端项目、MyBatisPlus、MySQL、vue、elementUi
文章目录 前言JC-1.快速上手SpringBootJC-1-1.SpringBoot入门程序制作(一)JC-1-2.SpringBoot入门程序制作(二)JC-1-3.SpringBoot入门程序制作(三)JC-1-4.SpringBoot入门程序制作(四)…...
golang中如何判断字符串是否包含另一字符串
golang中如何判断字符串是否包含另一字符串 在Go语言中,可以使用strings.Contains()函数来判断一个字符串是否包含另一个字符串。该函数接受两个参数:要搜索的字符串和要查找的子字符串,如果子字符串存在于要搜索的字符串中,则返…...
ONNX OpenVino TensorRT MediaPipe NCNN Diffusers ComfyUI
框架 和Java生成的中间文件可以在JVM上运行一样,AI技术在具体落地应用方面,和其他软件技术一样,也需要具体的部署和实施的。既然要做部署,那就会有不同平台设备上的各种不同的部署方法和相关的部署架构工具 onnx 在训练模型时可以…...
java中使用 Integer 和 int 的 含义、使用方法 及之间的区别
学习目标: 学习目标如下: 明确 Integer 和 int 的 含义、使用方法 及之间的区别 学习内容: 一、区别: 1.Integer是int的包装类,int则是java的一种基本的数据类型; 2.Integer变量必须实例化之后才能使用&a…...
点云从入门到精通技术详解100篇-点云的特征检测
目录 前言 点云配准的研究背景 多元时间序列的相似性分析研究背景及意义 国内外研究现状...
DOM破坏绕过XSSfilter例题
目录 一、什么是DOM破坏 二、例题1 编辑 三、多层关系 1.Collection集合方式 2.标签关系 四、例题2 一、什么是DOM破坏 DOM破坏(DOM Clobbering)指的是对网页上的DOM结构进行不当的修改,导致页面行为异常、性能问题、安全风险或其他不…...
代码随想录Day_56打卡
①、两个字符串的删除操作 给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。 每步 可以删除任意一个字符串中的一个字符。 事例: 输入: word1 "sea", word2 "eat" 输出: 2 解释: 第一步将 "sea&…...
高忆管理:六连板捷荣技术或难扛“华为概念股”大旗
在本钱商场上名不见经传的捷荣技术(002855.SZ)正扛起“华为概念股”大旗。 9月6日,捷荣技术已拿下第六个连续涨停板,短短七个生意日,股价累积涨幅逾越90%。公司已连发两份股票生意异动公告。 是炒作,还是…...
「解析」YOLOv5 classify分类模板
学习深度学习有些时间了,相信很多小伙伴都已经接触 图像分类、目标检测甚至图像分割(语义分割)等算法了,相信大部分小伙伴都是从分类入门,接触各式各样的 Backbone算法开启自己的炼丹之路。 但是炼丹并非全是 Backbone,更多的是各…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
