当前位置: 首页 > news >正文

ABY2.0:更低的通信开销

参考文献:

  1. [ABY] Demmler D, Schneider T, Zohner M. ABY-A framework for efficient mixed-protocol secure two-party computation[C]//NDSS. 2015.
  2. [ABY3] Mohassel P, Rindal P. ABY3: A mixed protocol framework for machine learning[C]//Proceedings of the 2018 ACM SIGSAC conference on computer and communications security. 2018: 35-52.
  3. [ABY2.0] Patra A, Schneider T, Suresh A, et al. {ABY2. 0}: Improved {Mixed-Protocol} Secure {Two-Party} Computation[C]//30th USENIX Security Symposium (USENIX Security 21). 2021: 2165-2182.
  4. [Beaver91] D. Beaver. Effificient multiparty protocols using circuit randomization. In CRYPTO, 1991.
  5. [ALSM13] Asharov G, Lindell Y, Schneider T, et al. More efficient oblivious transfer and extensions for faster secure computation[C]//Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security. 2013: 535-548.
  6. [RSS19] Rathee D, Schneider T, Shukla K K. Improved multiplication triple generation over rings via RLWE-based AHE[C]//International Conference on Cryptology and Network Security. Cham: Springer International Publishing, 2019: 347-359.

文章目录

  • 混合 MPC
  • 乘法协议
  • ABY 转换

混合 MPC

首先汇总下以 Arithmetic - Boolean - Yao 为名的三种混合协议:

  • 著名的 ABY 是第一个混合多种 MPC 协议的安全多方计算协议。不过由于 Yao’s GC 的限制,它仅仅是个半诚实安全的 2PC 协议
  • 之后的 ABY3 是一种恶意安全的 3PC 协议。它使用了 Yao’s GC 的三方扩展,两个 Garbler,一个 Evaluator。由于三方协议计算 AND 门不需要 Beaver Triple,因此计算速度比 ABY 快很多。
  • 而 ABY2.0 则是对 ABY 的通信性能做了改进,它也是半诚实安全的 2PC 协议

它们的基本流程都是:

  1. 利用 Sharing protocol,将输入值分享给各方
  2. 利用 SS 的 Linear Homomorphic 性质,以及 Multiplication protocol,计算给定的函数(期间做 A-B-Y 之间的 shares 转换)
  3. 使用 Reconstruction protocol,从 shares 恢复出输出值

乘法协议

使用 Beaver Triple 计算乘法门,给定元组 ( δ a , δ b , δ a b = δ a δ b ) (\delta_a,\delta_b,\delta_{ab}=\delta_a\delta_b) (δa,δb,δab=δaδb),满足关系
a b = ( a + δ a − δ a ) ( b + δ b − δ b ) = ( a + δ a ) ( b + δ b ) − ( a + δ a ) δ b − ( b + δ b ) δ a + δ a b \begin{aligned} ab &= (a+\delta_a-\delta_a)(b+\delta_b-\delta_b)\\ &= (a+\delta_a)(b+\delta_b) - (a+\delta_a)\delta_b - (b+\delta_b)\delta_a + \delta_{ab} \end{aligned} ab=(a+δaδa)(b+δbδb)=(a+δa)(b+δb)(a+δa)δb(b+δb)δa+δab

简记 Δ a = a + δ a , Δ b = b + δ b \Delta_a=a+\delta_a, \Delta_b=b+\delta_b Δa=a+δa,Δb=b+δb。参与方 P i , i ∈ { 0 , 1 } P_i,i\in \{0,1\} Pi,i{0,1} 持有 ( [ a ] i , [ δ a ] i ) , ( [ b ] i , [ δ b ] i ) , [ δ a b ] i ([a]_i, [\delta_a]_i),([b]_i, [\delta_b]_i), [\delta_{ab}]_i ([a]i,[δa]i),([b]i,[δb]i),[δab]i 这些 shares,为了计算 c = a b c=ab c=ab 的 shares,使用 Beaver 乘法协议

  1. P i P_i Pi 计算 [ Δ a ] i = [ a ] i + [ δ a ] i [\Delta_a]_i = [a]_i+[\delta_a]_i [Δa]i=[a]i+[δa]i 以及 [ Δ b ] i = [ b ] i + [ δ b ] i [\Delta_b]_i = [b]_i+[\delta_b]_i [Δb]i=[b]i+[δb]i
  2. P i P_i Pi 互相发送 [ Δ a ] i [\Delta_a]_i [Δa]i [ Δ b ] i [\Delta_b]_i [Δb]i 给对方(四个元素
  3. P i P_i Pi 重构出 Δ a = [ Δ a ] 0 + [ Δ a ] 1 \Delta_a=[\Delta_a]_0+[\Delta_a]_1 Δa=[Δa]0+[Δa]1 Δ a = [ Δ a ] 0 + [ Δ a ] 1 \Delta_a=[\Delta_a]_0+[\Delta_a]_1 Δa=[Δa]0+[Δa]1
  4. P i P_i Pi 计算 [ c ] i = i ⋅ Δ a Δ b − Δ a [ δ b ] i − Δ b [ δ a ] i + [ δ a b ] i [c]_i = i \cdot \Delta_a\Delta_b - \Delta_a[\delta_b]_i - \Delta_b[\delta_a]_i + [\delta_{ab}]_i [c]i=iΔaΔbΔa[δb]iΔb[δa]i+[δab]i
  5. P i P_i Pi 持有了 [ c ] i [c]_i [c]i,容易验证 [ c ] 0 + [ c ] 1 = a b = c [c]_0+[c]_1=ab=c [c]0+[c]1=ab=c

ABY2.0 观察到 Δ a , Δ b \Delta_a,\Delta_b Δa,Δb 最终是明文信息,因此修改 shares 的格式,从原本的 ( [ a ] i , [ δ a ] i ) ([a]_i, [\delta_a]_i) ([a]i,[δa]i) 变为了 ( Δ a , [ δ a ] i ) (\Delta_a,[\delta_a]_i) (Δa,[δa]i)。容易验证:
a = Δ a − [ δ a ] 0 − [ δ a ] 1 c 1 ⋅ ( Δ a , [ δ a ] i ) + c 2 ⋅ ( Δ b , [ δ b ] i ) = ( Δ c 1 a + c 2 b , [ δ c 1 a + c 2 b ] i ) a = \Delta_a - [\delta_a]_0 - [\delta_a]_1\\ c_1 \cdot (\Delta_a,[\delta_a]_i) + c_2 \cdot (\Delta_b,[\delta_b]_i) = (\Delta_{c_1a+c_2b}, [\delta_{c_1a+c_2b}]_i) a=Δa[δa]0[δa]1c1(Δa,[δa]i)+c2(Δb,[δb]i)=(Δc1a+c2b,[δc1a+c2b]i)

因此定义 ⟨ a ⟩ i : = ( Δ a , [ δ a ] i ) \langle a\rangle_i := (\Delta_a,[\delta_a]_i) ai:=(Δa,[δa]i) 是新的 shares 格式,它依然是线性同态的。它对应的 Sharing Protocol 为, P i P_i Pi 随机采样 [ δ a ] 0 , [ δ a ] 1 [\delta_a]_0,[\delta_a]_1 [δa]0,[δa]1,计算 Δ a = a + [ δ a ] 0 + [ δ a ] 1 \Delta_a=a+[\delta_a]_0+[\delta_a]_1 Δa=a+[δa]0+[δa]1,自己持有 ⟨ a ⟩ i = ( Δ a , [ δ a ] i ) \langle a\rangle_i = (\Delta_a,[\delta_a]_i) ai=(Δa,[δa]i),将 ⟨ a ⟩ 1 − i = ( Δ a , [ δ a ] 1 − i ) \langle a\rangle_{1-i} = (\Delta_a,[\delta_a]_{1-i}) a1i=(Δa,[δa]1i) 发送给对方。

参与方 P i , i ∈ { 0 , 1 } P_i,i\in \{0,1\} Pi,i{0,1} 持有 ( Δ a , [ δ a ] i ) , ( Δ b , [ δ b ] i ) , [ δ a b ] i (\Delta_a, [\delta_a]_i),(\Delta_b, [\delta_b]_i), [\delta_{ab}]_i (Δa,[δa]i),(Δb,[δb]i),[δab]i 这些 shares,为了计算 c = a b c=ab c=ab 的 shares,使用 ABY2.0 乘法协议

  1. P i P_i Pi 独立生成随机数 [ δ c ] i [\delta_c]_i [δc]i(作为 Sharing 协议的一部分)
  2. P i P_i Pi 计算 [ Δ c ] i = i ⋅ Δ a Δ b − Δ a [ δ b ] i − Δ b [ δ a ] i + [ δ a b ] i + [ δ c ] i [\Delta_c]_i = i \cdot \Delta_a\Delta_b - \Delta_a[\delta_b]_i - \Delta_b[\delta_a]_i + [\delta_{ab}]_i + [\delta_c]_i [Δc]i=iΔaΔbΔa[δb]iΔb[δa]i+[δab]i+[δc]i
  3. P i P_i Pi 互相发送 [ Δ c ] i [\Delta_c]_i [Δc]i 给对方(两个元素
  4. P i P_i Pi 重构出 Δ c = [ Δ c ] 0 + [ Δ c ] 1 \Delta_c = [\Delta_c]_0 + [\Delta_c]_1 Δc=[Δc]0+[Δc]1
  5. P i P_i Pi 持有了 ⟨ c ⟩ i = ( Δ c , [ δ c ] i ) \langle c \rangle_i = (\Delta_c, [\delta_c]_i) ci=(Δc,[δc]i),容易验证 Δ c − [ δ c ] 0 − [ δ c ] 1 = a b = c \Delta_c-[\delta_c]_0-[\delta_c]_1=ab=c Δc[δc]0[δc]1=ab=c

Beaver 和 ABY2.0 对比如下:

在这里插入图片描述

上述的乘法协议在算术电路和布尔电路中都奏效,假设消息空间是 Z 2 l \mathbb Z_{2^l} Z2l,那么在 Online 阶段,ABY2.0 乘法门的通信开销仅为 2 l 2l 2l 比特,对比 Beaver 的开销为 4 l 4l 4l 比特。

对于 Setup 阶段,ABY2.0 的开销没变,因为它依然要生成 Beaver Triple。这可以通过 C-OT 或者 AHE 实现。

  • 由于 δ a b = ( [ δ a ] 0 + [ δ a ] 1 ) ( [ δ b ] 0 + [ δ b ] 1 ) \delta_{ab} = ([\delta_a]_0+[\delta_a]_1)([\delta_b]_0+[\delta_b]_1) δab=([δa]0+[δa]1)([δb]0+[δb]1) 可以拆分出四项加和,其中两项 [ δ a ] i [ δ b ] i [\delta_a]_i[\delta_b]_i [δa]i[δb]i 可以本地计算,因此我们只需实现交叉项 [ δ a ] i [ δ b ] 1 − i [\delta_a]_i[\delta_b]_{1-i} [δa]i[δb]1i 的 shares 计算。
  • C-OT based [ALSM13],
    1. P i P_i Pi 作为发送方,定义相关函数 f j ( x ) = x + 2 j [ δ a ] i f_j(x)=x+2^j[\delta_a]_i fj(x)=x+2j[δa]i,输入 ( m j , 0 = r j , m j , 1 = f ( r j ) ) (m_{j,0}=r_j, m_{j,1}=f(r_j)) (mj,0=rj,mj,1=f(rj))
    2. P 1 − i P_{1-i} P1i 作为接收方,根据 [ δ b ] 1 − i [\delta_b]_{1-i} [δb]1i 的第 j j j 比特 b j b_j bj 做出选择, 获得 m j , b j m_{j,b_j} mj,bj
    3. P i P_i Pi 持有 [ d ] i = − ∑ j r j [d]_i = -\sum_jr_j [d]i=jrj P 1 − i P_{1-i} P1i 持有 [ d ] 1 − i = ∑ j m j , b j [d]_{1-i} = \sum_j m_{j,b_j} [d]1i=jmj,bj,容易验证 [ d ] i + [ d ] 1 − i = [ δ a ] i [ δ b ] 1 − i [d]_i+[d]_{1-i} = [\delta_a]_i[\delta_b]_{1-i} [d]i+[d]1i=[δa]i[δb]1i
  • AHE based [RSS19],
    1. P 0 P_0 P0 生成公钥 p k pk pk,将 [ δ a ] 0 , [ δ b ] 0 [\delta_a]_0, [\delta_b]_0 [δa]0,[δb]0 加密后发送给 P 1 P_1 P1
    2. P 1 P_1 P1 生成随机数 r r r,同态计算线性函数 v = [ δ a ] 0 [ δ b ] 1 + [ δ a ] 1 [ δ b ] 0 − r v = [\delta_a]_0[\delta_b]_1 + [\delta_a]_1[\delta_b]_0 - r v=[δa]0[δb]1+[δa]1[δb]0r
    3. P 1 P_1 P1 发送密文 E ( v ) E(v) E(v) P 0 P_0 P0 解密得到 v v v
    4. P 0 P_0 P0 持有 [ d ] 0 = v [d]_0=v [d]0=v P 1 P_1 P1 持有 [ d ] 1 = r [d]_1=r [d]1=r,容易验证 [ d ] 0 + [ d ] 1 = [ δ a ] 0 [ δ b ] 1 + [ δ a ] 1 [ δ b ] 0 [d]_0+[d]_1=[\delta_a]_0[\delta_b]_1 + [\delta_a]_1[\delta_b]_0 [d]0+[d]1=[δa]0[δb]1+[δa]1[δb]0

ABY 转换

ABY2.0 同时使用了 [ a ] i [a]_i [a]i ⟨ a ⟩ i \langle a \rangle_i ai 两种格式的 SS,因此 A-B-Y 之间的转换与 ABY 略有不同。不过基本思路是一样的,这里不再详细描述。

在这里插入图片描述

除了 Y2B,其他的转换 ABY2.0 的通信量更小。除了 A2B,其他的转换 ABY2.0 的通信轮数仅为 1 1 1。不过 ABY2.0 的初始化阶段通信开销会更大。

相关文章:

ABY2.0:更低的通信开销

参考文献: [ABY] Demmler D, Schneider T, Zohner M. ABY-A framework for efficient mixed-protocol secure two-party computation[C]//NDSS. 2015.[ABY3] Mohassel P, Rindal P. ABY3: A mixed protocol framework for machine learning[C]//Proceedings of the…...

vue项目预览图片

1.图片为本地上传的预览&#xff1a; <input type"file" ref"file"/> <img :src"imgUrl"/>let fr new FileReader()fr.readAsArrayBuffer(this.$refs.file.files[0])fr.addEventListener("loadend", (e) > {let buff…...

Tomcat 安装

1.关闭防火墙 2.安装JDK包 3. 4。添加环境变量 5.刷新配置文件 6.解压文件 7.启动tomcat 8. 9.编写tomcat.service文件 vim /etc/systemd/system/tomcat.service 10.刷新服务 11.打开浏览器访问&#xff1a;192.168.2.100:8080/&#xff0c;正常可以看到以下界面...

计算机网络的故事——HTTP报文内的HTTP信息

HTTP报文内的HTTP信息 文章目录 HTTP报文内的HTTP信息一、HTTP 报文二、请求报文及响应报文的结构三、编码提升传输速率 一、HTTP 报文 HTTP报文是由多行&#xff08;CRLF作换行符&#xff09;数据构成的字符串文本&#xff0c;HTTP报文可以分为报文首部和报文主体两部分&…...

CF1120 D. Power Tree 巧妙的图论转化

传送门 [前题提要]:无 题目描述: 就是给你一棵树,然后每个点有花费,然后你可以选一个点,付费后对这个点的子树的所有叶子结点增减任意权值. 考虑有一个人会给这棵树的所有叶子结点赋值(值我们不知道),输出最小的花费,使得无论它如何赋值,我们使用上述的花 费都能使所有的叶子…...

【算法训练-字符串 三】最长公共子串、最长公共子序列

废话不多说&#xff0c;喊一句号子鼓励自己&#xff1a;程序员永不失业&#xff0c;程序员走向架构&#xff01;本篇Blog的主题是【】&#xff0c;使用【】这个基本的数据结构来实现&#xff0c;这个高频题的站点是&#xff1a;CodeTop&#xff0c;筛选条件为&#xff1a;目标公…...

lintcode 1446 · 01矩阵走路问题 【两次BFS, VIP 中等 1也计算距离,但是不入队列】

题目链接&#xff0c;描述 https://www.lintcode.com/problem/1446 给定一个大小为 n*m 的 01 矩阵 grid &#xff0c;1 是墙&#xff0c;0 是路&#xff0c;你现在可以把 grid 中的一个 1 变成 0&#xff0c;请问从左上角走到右下角是否有路可走&#xff1f;如果有路可走&am…...

第一个实例:QT实现汽车电子仪表盘

目录 1.实现效果 1.1.视频演示 1.2.实现效果截图 2.生成的安装程序 3.功能概述 4.具体实现 5.QT扩展介绍 5.1.QT介绍 5.2.QT历史发展 5.3.QT平台支持 5.4.Qt Creator 5.5.优势 5.5.1.优良的跨平台特性 5.5.2.面向对象 5.5.3.丰富的 API 1.实现效果 1.1.视频演…...

【MySQL系列】MySQL的事务管理的学习(一)_ 事务概念 | 事务操作方式 | 事务隔离级别

「前言」文章内容大致是MySQL事务管理。 「归属专栏」MySQL 「主页链接」个人主页 「笔者」枫叶先生(fy) 目录 一、事务概念二、事务的版本支持三、事务提交方式四、事务常见的操作方式4.1 事务正常操作4.2 事务异常验证 五、事务隔离级别5.1 查看与设置隔离性5.2 读未提交&…...

扫地机器人还能创新吗?云鲸给了个Yes

作者 | 辰纹 来源 | 洞见新研社 1996年&#xff0c;瑞典家电巨头伊莱克斯推出全球首款扫地机器人“三叶虫”。 与现在的产品相比&#xff0c;“三叶虫”靠随机碰撞的模式对空间进行清扫&#xff0c;清洁效率很低&#xff0c;市场渗透率也不高&#xff0c;但并不妨碍戴森、iRo…...

PHP NBA球迷俱乐部系统Dreamweaver开发mysql数据库web结构php编程计算机网页

一、源码特点 PHP NBA球迷俱乐部系统是一套完善的web设计系统&#xff0c;对理解php编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 基于PHP的NBA球迷俱乐部 二、功能介绍 1、前台主要功能&#xff1a; 系统首页 网站介…...

JavaScript-----DOM元素

目录 前言&#xff1a; 1. DOM介绍 2. 获取节点 3. 操作HTML内容 4. 监听事件 案例 5. 操作节点的标签属性 6. 操作样式 7. 创建、添加、删除节点 前言&#xff1a; 在此之前我们要想去操作网页元素一般是去通过CSS选择器实现的&#xff0c;今天我们就学习JavaScript里…...

激光切割机在船舶行业的的应用有哪些

我国享有世界工厂的美誉&#xff0c;是全球制造业的主力。然而&#xff0c;在船舶制造的关键技术领域&#xff0c;我国的研发投入不足&#xff0c;技术进步仍滞后&#xff0c;我国高端船舶制造的实力仍显不足。 在我国制造业全面复苏的当前背景下&#xff0c;“精准制作”正构成…...

AFL++模糊测试

一、AFL 这里我们主要使用AFL Fuzzing 测试IOT的二进制文件&#xff0c;当我们解压提取一个固件时&#xff0c;能够获得大量的IOT二进制应用 &#xff0c;如果要进行漏洞挖掘则需要将二进制文件进行逆向分析&#xff0c;然后查找危险函数以及输入接口&#xff0c;对于一个大型的…...

C# 使用ListBox及Picturebox显示所选的任意路径文件夹下的图像

using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System...

数据库: 存储过程

sql server begin end用法: SQL Server中的BEGIN END用法是用于定义一个代码块&#xff0c;这个代码块可以包含多个SQL语句&#xff0c;BEGIN END通常用于控制流程语句&#xff0c;例如IF语句、WHILE语句、TRY CATCH语句等。在BEGIN END代码块中&#xff0c;可以使用变量、函数…...

【juc】ReentrantReadWriteLock之缓存(仅当学习)

目录 一、说明二、代码示例2.1 pom依赖2.2 示例代码2.3 实体类 三、示例截图 一、说明 1.针对于读多写少的情况 2.先查缓存&#xff0c;没有再去查库 二、代码示例 2.1 pom依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"h…...

FLUX查询InfluxDB -- InfluxDB笔记三

1. 入门 from(bucket: "example_query") // 没有筛选条件直接查询会报错|> range(start: -1h) // |>是管道符&#xff0c;后跟筛选条件 2. 序列、表和表流 序列是InfluxDB的概念&#xff0c;一个序列是由measurement、标签集、一个字段名称 表流是FLUX为了…...

pico学习进程记录已经开发项目

Pico pin脚定义 Pico 运行准备 下载uf2文件 https://pico.org.cn/ &#xff08;注意运行micropython的文件和运行c/c的不一样&#xff09; 装载uf2文件&#xff1a;按住pico的按键&#xff0c;然后通过micro usb连接电脑&#xff08;注意&#xff1a;如果用的线材&#xff0c…...

C++(20):多重继承与虚继承

多重继承 是指从多个直接基类中产生派生类的能力。多重继承的派生类继承了所有父类的属性。 多重继承 在派生类的派生列表中可以包含多个基类&#xff1a; class Bear : public zooAnimal { class Panda : public Bear, public Endangered{/* ...*/};每个基类包含一个可选的…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

若依登录用户名和密码加密

/*** 获取公钥&#xff1a;前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...

《Offer来了:Java面试核心知识点精讲》大纲

文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...

rm视觉学习1-自瞄部分

首先先感谢中南大学的开源&#xff0c;提供了很全面的思路&#xff0c;减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接&#xff1a;https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架&#xff1a; 代码框架结构&#xff1a;readme有…...