【每日一题】补档 ABC309F - Box in Box | 三维偏序 | 树状数组 | 中等
题目内容
原题链接
给定 n n n 个箱子,问是否存在一个箱子 x x x 是否可以放到另一个箱子 y y y 里。
需要满足 h x < h y , w x < w y , d x < d y h_x<h_y,w_x<w_y,d_x<d_y hx<hy,wx<wy,dx<dy。
箱子可以随意翻转。
数据范围
1 ≤ n ≤ 2 ⋅ 1 0 5 1\leq n\leq 2\cdot 10^5 1≤n≤2⋅105
1 ≤ h i , w i , d i ≤ 1 0 9 1\leq h_i,w_i,d_i\leq 10^9 1≤hi,wi,di≤109
题解
首先按从小到大对 h , w , d h,w,d h,w,d 进行排序。
这里假设对所有的箱子,排序后都有 h ≤ w ≤ d h\leq w\leq d h≤w≤d
那么我们再按照 h h h 为第一关键字, w w w 为第二关键字, d d d 为第三关键字对箱子进行从小到大的排序。
然后我们从按 h h h 从小到大枚举,每次将所有 h h h 相同的箱子一起枚举。
这样,我们就可以对剩下的 w w w 和 d d d 构建树状数组了。
对于箱子 i i i ,找到 h j < h i h_j<h_i hj<hi 的 j j j ,且 w j < w i w_j<w_i wj<wi 的最小的 d j d_j dj 。判断 d j < d i d_j < d_i dj<di 是否成立即可。
然后在判断完后,将所有值为 h i h_i hi 的箱子都加入到树状数组中。
如 q u e r y ( p ) query(p) query(p) 其实是在求 w ≤ p w\leq p w≤p 的最小的 d d d 。
这个问题又叫三维偏序。
时间复杂度: O ( n log n ) O(n\log n) O(nlogn)
代码
#include <bits/stdc++.h>
using namespace std;const int INF = 0x3f3f3f3f;struct Node {int a[3];
};int main()
{ios::sync_with_stdio(false);cin.tie(nullptr);int n;cin >> n;vector<Node> vec(n);for (int i = 0; i < n; ++i) {for (int j = 0; j < 3; ++j) cin >> vec[i].a[j];sort(vec[i].a, vec[i].a + 3);}sort(vec.begin(), vec.end(), [](const Node& A, const Node& B) {return A.a[0] < B.a[0];});vector<int> b;for (int i = 0; i < n; ++i) b.push_back(vec[i].a[1]);sort(b.begin(), b.end());b.erase(unique(b.begin(), b.end()), b.end());auto get = [&](int x) {return int(lower_bound(b.begin(), b.end(), x) - b.begin() + 1);};for (int i = 0; i < n; ++i) vec[i].a[1] = get(vec[i].a[1]);int m = int(b.size());vector<int> tr(m + 1, INF);auto update = [&](int p, int x) {while (p <= m) {tr[p] = min(tr[p], x);p += (p & -p);}};auto query = [&](int p) {int res = INF;while (p >= 1) {res = min(res, tr[p]);p -= (p & -p);}return res;};bool ok = false;for (int i = 0; i < n; ++i) {int j = i + 1;while (j < n && vec[j].a[0] == vec[i].a[0]) j += 1;// 找到是否存在这么一个即可for (int k = i; k < j; ++k) {if (query(vec[k].a[1] - 1) < vec[k].a[2]) {ok = true;break;}}if (ok) break;// 把当前的部分全部添加进去for (int k = i; k < j; ++k) {update(vec[k].a[1], vec[k].a[2]);}i = j - 1;}if (ok) cout << "Yes\n";else cout << "No\n";return 0;
}
相关文章:
【每日一题】补档 ABC309F - Box in Box | 三维偏序 | 树状数组 | 中等
题目内容 原题链接 给定 n n n 个箱子,问是否存在一个箱子 x x x 是否可以放到另一个箱子 y y y 里。 需要满足 h x < h y , w x < w y , d x < d y h_x<h_y,w_x<w_y,d_x<d_y hx<hy,wx<wy,dx<dy。 箱子可以随意翻转。 …...
异步编程 - 13 高性能线程间消息传递库 Disruptor
文章目录 Disruptor概述Disruptor中的核心术语Disruptor 流程图 Disruptor的特性详解基于Disruptor实现异步编程 Disruptor概述 Disruptor是一个高性能的线程间消息传递库,它源于LMAX对并发性、性能和非阻塞算法的研究,如今构成了其Exchange基础架构的核…...
(DXE_DRIVER)PciHostBridge
UEFI-PciHostBridge 1、PciHostBridge简介 PciHostBridge: 提供PCI配置空间,IO,MEM空间访问接口以及统一维护平台相关的PCI资源,提供gEfiPciHostBridgeResourceAllocationProtocolGuid,创建RootBridge等为PciBusDxe提供服务; 2、PciHostBridge 配置空间 PCI桥可管理其下PCI子…...
SpringMVC的增删改查的案例
目录 前言: 1.总体思路: 2.前期准备 3.前台页面 前言: 我们今天来学习研究SpringMVC的增删改查,希望这篇博客能够帮助正在学习,工作的你们!!! 1.总体思路: 首先我们得…...
golang入门笔记——nginx
文章目录 Nginx介绍Nginx的安装Nginx文件Nginx反向代理负载均衡nginx动静分离URLRewrite防盗链nginx高可用配置安全性Nginx限流Nginx缓存集成Lua脚本OpenRestry Nginx介绍 Nginx是一个高性能的HTTP和反向代理服务器,特点是占用内存少,并发能力强&#x…...
最新报告!TikTok 市场小家电大商机,GMV破亿的爆款如何复制?
近期,新锐小家电品牌Gaabor空气炸锅在东南亚卖爆了,单款商品GMV短时间内突破两亿,在印尼、泰国、马来西亚、菲律宾、越南均开设本土TikTok 小店,增长势头还在持续。 但Gaabor并不是个例。 整个东南亚家电市场规模增长迅速&#…...
功能定义-紧急制动系统
功能简介 紧急制动系统的触发过程如上图所示: 安全距离报警:当两车距离较近时,会给予驾驶员相应提示 预报警:当两车存在碰撞风险但风险较低【Danger Level1】时,会给予驾驶员提示【提示相比之前更为明显】 制动预填充&…...
Map与Set的区别
map与set是一种进行搜索的数据结构。 一 Map map存储的是key-value的键值对。 1 map中的常见方法 方法作用put(key,value)向map中存放key-value键值对get(key)根据key值得到value值getOrDefault(key,value)获取值为key的value,若不存在,则将key值对应…...
基于uwb和IMU融合的三维空间定位算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ..........................................................................kkk 0; for E…...
Visual Studio 2019下使用C++与Python进行混合编程——环境配置与C++调用Python API接口
前言 在vs2019下使用C与Python进行混合编程,在根源上讲,Python 本身就是一个C库,那么这里使用其中最简单的一种方法是把Python的C API来嵌入C项目中,来实现混合编程。当前的环境是,win10,IDE是vs2019,python版本是3.9,…...
STM32F4X RTC
STM32F4X RTC 什么是RTCSTM32F4X RTCSTM32F4X RTC框图STM32F4X RTC计数频率STM32F4X RTC日历STM32F4X RTC闹钟 STM32F4X RTC例程 什么是RTC RTC全程叫Real-Time Clock实时时钟,是MCU中一个用来计时的模块。RTC的一个主要作用是用来显示实时时间,就像日常…...
[git] 如何克隆仓库,进行项目撰写,并绑定自己的远程仓库
摘要:删除.git文件,才可重新绑定远程仓库。 具体步骤: 文件夹右键,进入”Git Bash Here“执行命令 1. 执行 ”git clone 仓库地址“,克隆仓库 2. 在生成的仓库中,删除 .git 文件 3. git init 初始化仓库…...
【C++】模拟实现二叉搜索树的增删查改功能
个人主页:🍝在肯德基吃麻辣烫 我的gitee:C仓库 个人专栏:C专栏 文章目录 一、二叉搜索树的Insert操作(非递归)分析过程代码求解 二、二叉搜索树的Erase操作(非递归)分析过程代码求解…...
Yolov8-pose关键点检测:模型轻量化创新 | ScConv结合c2f | CVPR2023
💡💡💡本文解决什么问题:ScConv(空间和通道重建卷积),一个即插即用的架构单元,可以可以直接用来替代各种卷积神经网络中的标准卷积。 ScConv | GFLOPs从9.6降低至9,参数量从6482kb降低至6479kb Yolov8-Pose关键点检测专栏介绍:https://blog.csdn.net/m0_637742…...
【洛谷 P1060】[NOIP2006 普及组] 开心的金明 题解(动态规划+01背包)
[NOIP2006 普及组] 开心的金明 题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说…...
什么是CI/CD:持续集成与持续交付?(InsCode AI 创作助手)
在现代软件开发领域,CICD(Continuous Integration and Continuous Delivery)是一种关键性的开发实践,它有助于提高软件交付的质量和效率。本文将深入探讨CICD的定义、原理和重要性,以及如何在项目中实施CICD流程。 什…...
redis 高可用
Redis 高可用 在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。 但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供…...
什么样的词条可以创建维基百科?
维基百科在国内用得比较少,有一些特殊原因,维基百科的控制权海外,目前维基百科和谷歌是一样的,在国内是无法正常访问的。但做海外推广的朋友都是知道维基百科的,小马识途营销顾问认为它在世界互联网领域的地位…...
poll epoll初学习
正是select这些缺点,才有了poll 1.I/O多路转接之poll 2.I/O多路转接之epoll 其中的struct epoll_event:...
BMS电池管理系统——电芯需求数据(三)
BMS电池管理系统 文章目录 BMS电池管理系统前言一、有什么基础数据二、基础数据分析1.充放电的截至电压2.SOC-OCV关系表3.充放电电流限制表4.充放电容量特性5.自放电率 总结 前言 在新能源产业中电芯的开发也占有很大部分,下面我们就来看一下电芯的需求数据有哪些 …...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
