当前位置: 首页 > news >正文

【每日一题】补档 ABC309F - Box in Box | 三维偏序 | 树状数组 | 中等

题目内容

原题链接

给定 n n n 个箱子,问是否存在一个箱子 x x x 是否可以放到另一个箱子 y y y 里。
需要满足 h x < h y , w x < w y , d x < d y h_x<h_y,w_x<w_y,d_x<d_y hx<hy,wx<wy,dx<dy
箱子可以随意翻转。

数据范围

1 ≤ n ≤ 2 ⋅ 1 0 5 1\leq n\leq 2\cdot 10^5 1n2105
1 ≤ h i , w i , d i ≤ 1 0 9 1\leq h_i,w_i,d_i\leq 10^9 1hi,wi,di109

题解

首先按从小到大对 h , w , d h,w,d h,w,d 进行排序。

这里假设对所有的箱子,排序后都有 h ≤ w ≤ d h\leq w\leq d hwd

那么我们再按照 h h h 为第一关键字, w w w 为第二关键字, d d d 为第三关键字对箱子进行从小到大的排序。

然后我们从按 h h h 从小到大枚举,每次将所有 h h h 相同的箱子一起枚举。

这样,我们就可以对剩下的 w w w d d d 构建树状数组了。

对于箱子 i i i ,找到 h j < h i h_j<h_i hj<hi j j j ,且 w j < w i w_j<w_i wj<wi 的最小的 d j d_j dj 。判断 d j < d i d_j < d_i dj<di 是否成立即可。

然后在判断完后,将所有值为 h i h_i hi 的箱子都加入到树状数组中。

q u e r y ( p ) query(p) query(p) 其实是在求 w ≤ p w\leq p wp 的最小的 d d d

这个问题又叫三维偏序。

时间复杂度: O ( n log ⁡ n ) O(n\log n) O(nlogn)

代码

#include <bits/stdc++.h>
using namespace std;const int INF = 0x3f3f3f3f;struct Node {int a[3];
};int main()
{ios::sync_with_stdio(false);cin.tie(nullptr);int n;cin >> n;vector<Node> vec(n);for (int i = 0; i < n; ++i) {for (int j = 0; j < 3; ++j) cin >> vec[i].a[j];sort(vec[i].a, vec[i].a + 3);}sort(vec.begin(), vec.end(), [](const Node& A, const Node& B) {return A.a[0] < B.a[0];});vector<int> b;for (int i = 0; i < n; ++i) b.push_back(vec[i].a[1]);sort(b.begin(), b.end());b.erase(unique(b.begin(), b.end()), b.end());auto get = [&](int x) {return int(lower_bound(b.begin(), b.end(), x) - b.begin() + 1);};for (int i = 0; i < n; ++i) vec[i].a[1] = get(vec[i].a[1]);int m = int(b.size());vector<int> tr(m + 1, INF);auto update = [&](int p, int x) {while (p <= m) {tr[p] = min(tr[p], x);p += (p & -p);}};auto query = [&](int p) {int res = INF;while (p >= 1) {res = min(res, tr[p]);p -= (p & -p);}return res;};bool ok = false;for (int i = 0; i < n; ++i) {int j = i + 1;while (j < n && vec[j].a[0] == vec[i].a[0]) j += 1;// 找到是否存在这么一个即可for (int k = i; k < j; ++k) {if (query(vec[k].a[1] - 1) < vec[k].a[2]) {ok = true;break;}}if (ok) break;// 把当前的部分全部添加进去for (int k = i; k < j; ++k) {update(vec[k].a[1], vec[k].a[2]);}i = j - 1;}if (ok) cout << "Yes\n";else cout << "No\n";return 0;
}

相关文章:

【每日一题】补档 ABC309F - Box in Box | 三维偏序 | 树状数组 | 中等

题目内容 原题链接 给定 n n n 个箱子&#xff0c;问是否存在一个箱子 x x x 是否可以放到另一个箱子 y y y 里。 需要满足 h x < h y , w x < w y , d x < d y h_x<h_y,w_x<w_y,d_x<d_y hx​<hy​,wx​<wy​,dx​<dy​。 箱子可以随意翻转。 …...

异步编程 - 13 高性能线程间消息传递库 Disruptor

文章目录 Disruptor概述Disruptor中的核心术语Disruptor 流程图 Disruptor的特性详解基于Disruptor实现异步编程 Disruptor概述 Disruptor是一个高性能的线程间消息传递库&#xff0c;它源于LMAX对并发性、性能和非阻塞算法的研究&#xff0c;如今构成了其Exchange基础架构的核…...

(DXE_DRIVER)PciHostBridge

UEFI-PciHostBridge 1、PciHostBridge简介 PciHostBridge: 提供PCI配置空间,IO,MEM空间访问接口以及统一维护平台相关的PCI资源,提供gEfiPciHostBridgeResourceAllocationProtocolGuid,创建RootBridge等为PciBusDxe提供服务; 2、PciHostBridge 配置空间 PCI桥可管理其下PCI子…...

SpringMVC的增删改查的案例

目录 前言&#xff1a; 1.总体思路&#xff1a; 2.前期准备 3.前台页面 前言&#xff1a; 我们今天来学习研究SpringMVC的增删改查&#xff0c;希望这篇博客能够帮助正在学习&#xff0c;工作的你们&#xff01;&#xff01;&#xff01; 1.总体思路&#xff1a; 首先我们得…...

golang入门笔记——nginx

文章目录 Nginx介绍Nginx的安装Nginx文件Nginx反向代理负载均衡nginx动静分离URLRewrite防盗链nginx高可用配置安全性Nginx限流Nginx缓存集成Lua脚本OpenRestry Nginx介绍 Nginx是一个高性能的HTTP和反向代理服务器&#xff0c;特点是占用内存少&#xff0c;并发能力强&#x…...

最新报告!TikTok 市场小家电大商机,GMV破亿的爆款如何复制?

近期&#xff0c;新锐小家电品牌Gaabor空气炸锅在东南亚卖爆了&#xff0c;单款商品GMV短时间内突破两亿&#xff0c;在印尼、泰国、马来西亚、菲律宾、越南均开设本土TikTok 小店&#xff0c;增长势头还在持续。 但Gaabor并不是个例。 整个东南亚家电市场规模增长迅速&#…...

功能定义-紧急制动系统

功能简介 紧急制动系统的触发过程如上图所示&#xff1a; 安全距离报警&#xff1a;当两车距离较近时&#xff0c;会给予驾驶员相应提示 预报警&#xff1a;当两车存在碰撞风险但风险较低【Danger Level1】时&#xff0c;会给予驾驶员提示【提示相比之前更为明显】 制动预填充&…...

Map与Set的区别

map与set是一种进行搜索的数据结构。 一 Map map存储的是key-value的键值对。 1 map中的常见方法 方法作用put(key,value)向map中存放key-value键值对get(key)根据key值得到value值getOrDefault(key,value)获取值为key的value&#xff0c;若不存在&#xff0c;则将key值对应…...

基于uwb和IMU融合的三维空间定位算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ..........................................................................kkk 0; for E…...

Visual Studio 2019下使用C++与Python进行混合编程——环境配置与C++调用Python API接口

前言 在vs2019下使用C与Python进行混合编程,在根源上讲&#xff0c;Python 本身就是一个C库&#xff0c;那么这里使用其中最简单的一种方法是把Python的C API来嵌入C项目中&#xff0c;来实现混合编程。当前的环境是&#xff0c;win10,IDE是vs2019,python版本是3.9&#xff0c…...

STM32F4X RTC

STM32F4X RTC 什么是RTCSTM32F4X RTCSTM32F4X RTC框图STM32F4X RTC计数频率STM32F4X RTC日历STM32F4X RTC闹钟 STM32F4X RTC例程 什么是RTC RTC全程叫Real-Time Clock实时时钟&#xff0c;是MCU中一个用来计时的模块。RTC的一个主要作用是用来显示实时时间&#xff0c;就像日常…...

[git] 如何克隆仓库,进行项目撰写,并绑定自己的远程仓库

摘要&#xff1a;删除.git文件&#xff0c;才可重新绑定远程仓库。 具体步骤&#xff1a; 文件夹右键&#xff0c;进入”Git Bash Here“执行命令 1. 执行 ”git clone 仓库地址“&#xff0c;克隆仓库 2. 在生成的仓库中&#xff0c;删除 .git 文件 3. git init 初始化仓库…...

【C++】模拟实现二叉搜索树的增删查改功能

个人主页&#xff1a;&#x1f35d;在肯德基吃麻辣烫 我的gitee&#xff1a;C仓库 个人专栏&#xff1a;C专栏 文章目录 一、二叉搜索树的Insert操作&#xff08;非递归&#xff09;分析过程代码求解 二、二叉搜索树的Erase操作&#xff08;非递归&#xff09;分析过程代码求解…...

Yolov8-pose关键点检测:模型轻量化创新 | ScConv结合c2f | CVPR2023

💡💡💡本文解决什么问题:ScConv(空间和通道重建卷积),一个即插即用的架构单元,可以可以直接用来替代各种卷积神经网络中的标准卷积。 ScConv | GFLOPs从9.6降低至9,参数量从6482kb降低至6479kb Yolov8-Pose关键点检测专栏介绍:https://blog.csdn.net/m0_637742…...

【洛谷 P1060】[NOIP2006 普及组] 开心的金明 题解(动态规划+01背包)

[NOIP2006 普及组] 开心的金明 题目描述 金明今天很开心&#xff0c;家里购置的新房就要领钥匙了&#xff0c;新房里有一间他自己专用的很宽敞的房间。更让他高兴的是&#xff0c;妈妈昨天对他说&#xff1a;“你的房间需要购买哪些物品&#xff0c;怎么布置&#xff0c;你说…...

什么是CI/CD:持续集成与持续交付?(InsCode AI 创作助手)

在现代软件开发领域&#xff0c;CICD&#xff08;Continuous Integration and Continuous Delivery&#xff09;是一种关键性的开发实践&#xff0c;它有助于提高软件交付的质量和效率。本文将深入探讨CICD的定义、原理和重要性&#xff0c;以及如何在项目中实施CICD流程。 什…...

redis 高可用

Redis 高可用 在web服务器中&#xff0c;高可用是指服务器可以正常访问的时间&#xff0c;衡量的标准是在多长时间内可以提供正常服务&#xff08;99.9%、99.99%、99.999%等等&#xff09;。 但是在Redis语境中&#xff0c;高可用的含义似乎要宽泛一些&#xff0c;除了保证提供…...

什么样的词条可以创建维基百科?

维基百科在国内用得比较少&#xff0c;有一些特殊原因&#xff0c;维基百科的控制权海外&#xff0c;目前维基百科和谷歌是一样的&#xff0c;在国内是无法正常访问的。但做海外推广的朋友都是知道维基百科的&#xff0c;小马识途营销顾问认为它在世界互联网领域的地位&#xf…...

poll epoll初学习

正是select这些缺点&#xff0c;才有了poll 1.I/O多路转接之poll 2.I/O多路转接之epoll 其中的struct epoll_event:...

BMS电池管理系统——电芯需求数据(三)

BMS电池管理系统 文章目录 BMS电池管理系统前言一、有什么基础数据二、基础数据分析1.充放电的截至电压2.SOC-OCV关系表3.充放电电流限制表4.充放电容量特性5.自放电率 总结 前言 在新能源产业中电芯的开发也占有很大部分&#xff0c;下面我们就来看一下电芯的需求数据有哪些 …...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...