Kaldi语音识别技术(八) ----- 整合HCLG
Kaldi语音识别技术(八) ----- 整合HCLG
文章目录
- Kaldi语音识别技术(八) ----- 整合HCLG
- HCLG 概述
- 组合LG.fst
- 可视化 LG.fst
- 组合CLG.fst
- 可视化CLG.fst
- 生成H.fst
- 组合HCLG.fst
- 生成HaCLG.fst
- 生成HCLG.fst
HCLG 概述
HCLG= min(det(H o min(det(C o min(det(L o G)))))
将四者逐层合并,即可得到最后的图。其中, o表示组合,det表示确定化,min表示最小化。
WFST的融合一般是从大到小,即先将G与L进行融合,再一次融合C、H,每次融合都要进行确定化(determinisation)和最小化(minimisation),最小化是指将WFST转换为一个状态节点和边更少的等价WFST,提高搜索的效率。HCLG的组合可以参考 kaldi/wsj/s5/utils/mkgraph.sh

组合LG.fst
- fsttablecompose
用法:
fsttablecompose
Composition algorithm [between two FSTs of standard type, in tropical
semiring] that is more efficient for certain cases-- in particular,
where one of the FSTs (the left one, if --match-side=left) has large
out-degreeUsage: fsttablecompose (fst1-rxfilename|fst1-rspecifier) (fst2-rxfilename|fst2-rspecifier) [(out-rxfilename|out-rspecifier)]
使用实列:
cd ~/kaldi && mkdir HCLG
fsttablecompose ~/kaldi/data/L/lang/L_disambig.fst ~/kaldi/data/G/normal/G.fst | fstdeterminizestar --use-log=true | fstminimizeencoded | fstpushspecial | fstarcsort --sort_type=ilabel > ~/kaldi/data/HCLG/LG.fst

fstisstochastic 这是一个诊断步骤,他打印出两个数字,最小权重和最大权重
fsttablecompose 将两个fst(L.fst、G.fst)合并成一个fst(LG.fst),将前端输出字符对应上后端输入即可,合并后前端输入作为合并后fst之输入,后端输出作为合并后输出;
fstdeterminizestar 做确定化(从一个状态接收同一个输入后只会跳转到一个状态),消除空转移,降低图的冗余度;
fstminimizeencoded 将fst最小化,将权重尽量前推,尽量利用上语言模型的信息,避免重要路径被剪枝;
fstisstochastic 进行归一化,保证状态上各输出概率之合为1。
可视化 LG.fst
- fstprint
cd ~/kaldi/data
fstprint --isymbols=./G/normal/phones.txt --osymbols=./G/normal/words.txt ./HCLG/LG.fst > ./HCLG/LG.txt

- fstdraw
fstdraw --isymbols=./G/normal/phones.txt --osymbols=./G/normal/words.txt ./HCLG/LG.fst > ./HCLG/LG.dot # 生成dot文件
dot -Tsvg ./HCLG/LG.dot > LG.svg # 转成svg矢量图(放大不会失真)
所需时间很长,不进行尝试。
组合CLG.fst
fstcomposecontext
用法:
fstcomposecontext
Composes on the left with a dynamically created context FSTUsage: fstcomposecontext <ilabels-output-file> [<in.fst> [<out.fst>] ]
E.g: fstcomposecontext ilabels.sym < LG.fst > CLG.fst
使用实列:
cd ~/kaldi/data/HCLG
fstcomposecontext --context-size=1 --central-position=0 --read-disambig-syms=/root/kaldi/data/G/normal/phones/disambig.int --write-disambig-syms=disambig_ilabels.int disambig_ilabels < LG.fst > CLG.fst
参数详解:
–context-size=1 单音素模型
–central-position=0 中间音素位置为0
–read-disambig-syms disambig.int来自生成的L或G过程中生成的phones文件夹中的文件,输入文件LdG-Ngram.fst来自于上一步合并的LdG-Ngram.fst模型。

在Kaldi中一般不会显式创建出单独的C.fst再和LG 组合,不用fsttablecompose命令,而是使用fstcomposecontext 工具根据LG.fst动态的生成CLG.fst。当然也可以先创建C.fst,然后使用fsttablecompose命令融合,但是这种方式相当耗时。 这里构建出来disambig_ilabels.int和disambig_ilabels 2个文件,用于生成Ha.fst。
可视化CLG.fst
- fstprint
fstprint fstprint --isymbols=../G/normal/phones.txt --osymbols=../G/normal/words.txt ./CLG.fst > CLG.txt

- fstdraw
fstdraw --isymbols=./G/normal/phones.txt --osymbols=../G/normal/words.txt ../CLG.fst > CLG.dot # 再使用dot工具转为图片即可
生成H.fst
make-h-transducer
make-h-transducer是基于HMM拓扑结构构建不带自转移的声学模型Ha.fs
用法:
make-h-transducer
Make H transducer from transition-ids to context-dependent phones, without self-loops [use add-self-loops to add them]
Usage: make-h-transducer <ilabel-info-file> <tree-file> <transition-gmm/acoustic-model> [<H-fst-out>]
e.g.: make-h-transducer ilabel_info 1.tree 1.mdl > H.fst
使用实列:
make-h-transducer disambig_ilabels /root/kaldi/data/H/mono/tree /root/kaldi/data/H/mono/final.mdl > Ha.fst
参数详解:
第一个输入参数(disambig_ilabels )为组合CLG.fst时生成的。
第二个输入参数为 GMM训练生成的决策树(tree)。
第三个输入参数为 GMM训练生成的最终模型。(Ha.fst中的a表示没有自环(self-loop))。

组合HCLG.fst
生成HaCLG.fst
fsttablecompose
fstrmsymbols:去除HaCLG.fst模型中与消歧相关的转移。disambig_tid.int为组合CLG.fst时生成的。
用法:
fsttablecompose
Composition algorithm [between two FSTs of standard type, in tropical
semiring] that is more efficient for certain cases-- in particular,
where one of the FSTs (the left one, if --match-side=left) has large
out-degree
Usage: fsttablecompose (fst1-rxfilename|fst1-rspecifier) (fst2-rxfilename|fst2-rspecifier) [(out-rxfilename|out-rspecifier)]
使用实列:
fsttablecompose Ha.fst CLG.fst | fstdeterminizestar --use-log=true | fstrmsymbols disambig_tid.int | fstrmepslocal | fstminimizeencoded | fstpushspecial > HaCLG.fst

1、为HaCLG.fst模型添加自环
add-self-loops --self-loop-scale=0.1 --reorder=true /root/kaldi/data/H/mono/final.mdl < HaCLG.fst
生成HCLG.fst
2、将HaCLG转换为HCLG
fstconvert --fst_type=const HaCLG.fst >HCLG.fst

至此,HCLG.fst已经生成,整个kaldi语音识别系统的核心内容已经构建完成,只需要将其进行应用即可!
有问题欢迎私信或者留言探讨,完整的虚拟机克隆后面会放评论区,感谢支持!
推荐文章: Kaldi的HCLG构图过程可视化
相关文章:
Kaldi语音识别技术(八) ----- 整合HCLG
Kaldi语音识别技术(八) ----- 整合HCLG 文章目录Kaldi语音识别技术(八) ----- 整合HCLGHCLG 概述组合LG.fst可视化 LG.fst组合CLG.fst可视化CLG.fst生成H.fst组合HCLG.fst生成HaCLG.fst生成HCLG.fstHCLG 概述 HCLG min(det(H o min(det(C o min(det(L o G))))) 将…...
day17_异常
今日内容 上课同步视频:CuteN饕餮的个人空间_哔哩哔哩_bilibili 同步笔记沐沐霸的博客_CSDN博客-Java2301 零、 复习昨日 一、作业 二、异常 三、自定义异常 零、 复习昨日 见晨考 一、作业 package com.qf.homework;import java.text.ParseException; import java.text.Simpl…...
vue中把node-sass换成dart-sass方式(解决办法)
目录 一、替换原因 二、art-sass和node-sass的区别 三、替换方法 一、替换原因 因为node-sass和node.js版本关联太紧了,如果这两个版本不匹配,就会起冲突,导致项目无法运行。 ps:值得一提的是node版本和要运行的项目使用的依…...
深入浅出深度学习Pytroch
本文将以通俗易懂的方式,深入浅出地为您揭开深度学习模型构建与训练的面纱: 深度学习数据data模型model损失函数loss优化optimizer可视化visualizer深度学习 数据data 模型model 损失函数loss 优化optimizer 可视化visualizer深度学习数据data模型m…...
CCNP350-401学习笔记(451-500题)
451、what is the function of the LISP map resolver? A. to send traffic to non-LISP sites when connected to a service provider that does not accept nonroutable EIDs as packet sources B. to connect a site to the LISP-capabie part of a core network, publish …...
3年功能测试经验,面试想拿到15k很难吗?
一直觉得经验多,无论在哪都能找到满意的工作,但是现实却是给我打了一个大巴掌!事后也不会给糖的那种... 个人情况 大概介绍一下个人情况,男,本科,三年多测试工作经验,一毕业因为不成熟的经验以…...
【7/101】101次面试之测试技术面试题
01、什么是兼容性测试?兼容性测试侧重哪些方面?答:兼容性测试是一种软件测试类型,它的主要目的是确保一个应用程序在不同的操作系统、不同的浏览器、不同的设备、不同的网络环境等各种环境下能够正常运行,并且不会产生…...
【蓝桥杯每日一题】前缀和算法
🍎 博客主页:🌙披星戴月的贾维斯 🍎 欢迎关注:👍点赞🍃收藏🔥留言 🍇系列专栏:🌙 蓝桥杯 🌙我与杀戮之中绽放,亦如黎明的花…...
【C#基础】C# 常用数据结构
序号系列文章4【C#基础】C# 变量和常量的使用5【C#基础】C# 运算符总结6【C#基础】C# 常用语句讲解文章目录前言数据结构的概念1,数组 (Array)1.1,声明并初始化赋值1.2,访问数组元素1.3,Array 类的使用2&am…...
MySql 及MyBatis数据的批量操作
1、Mybatis操作 1、批量更新 <update id"updateCtcc" parameterType"java.util.List">update ctcc set scan1 where id in<foreach collection"list" item"item" index"index" open"(" close")&qu…...
无代码表格数据库——一个企业数字化新物种
商业活动的“非标”地带在现实商业活动中存在大量未被明确界定、规范和标准化的灰色地带,它们不像电信、金融、财会、证券经纪、保险、建筑设计、工程造价等具有高度专业性的业务板块一样有强制的行业标准、规范甚至从业资格证书加持,下文统称其为非标业…...
第十三届蓝桥杯国赛 C++ C组 F 题、Python B组 E 题——近似GCD(AC)
目录1.近似GCD1.题目描述2.输入格式3.输出格式4.样例输入5.样例输出6.数据范围7.原题链接2.解题思路3.Ac_code1.C2.Python1.近似GCD 1.题目描述 小蓝有一个长度为 nnn 的数组 A(a1,a2,⋯,an)A\left(a_{1}, a_{2}, \cdots, a_{n}\right)A(a1,a2,⋯,an), 数组的子数组被定…...
分享5款小众良心软件,好用到让人惊艳
目前win7渐渐退出视野,大部分人都开始使用win10了,笔者在日常的工作和使用中,为了能够让效率的大提升,下载了不少软件,以下的软件都是个人认为装机必备,而且都是可以免费下载,且没有插件的。 1…...
WAF是什么?一篇文章带你全面了解WAF
WAF是什么?一篇文章带你全面了解WAF 文章目录WAF是什么?一篇文章带你全面了解WAFWAF是什么?一、WAF的工作原理二、WAF的分类三、WAF的特点四、如何选择和部署WAFWAF是什么? Web应用程序防火墙(Web Application Firewa…...
django项目实战八(django+bootstrap实现增删改查)进阶验证码
目录 一、安装第三方 1、pillow 2、第三方字体文件 二、实现生成验证码 1、创建code.py 2、url 3、修改auth.py 4、修改account.py 5、修改login.html 三、验证码校验 1、验证码写入到session 2、修改form下的LoginForm类新增code字段 3、修改login.html 4、修改acco…...
IP 协议
1.IP协议报头如下图:版本号 代表的是当前的IP协议的版本,此处的版本一共有两个取值:v4和v6.本文着重针对v4版本进行解析.首部长度 代表的是整个IP报头的长度,这个报头长度是可变长的,可变长的原因在于报头中的选项,这个属性是一个可有可无的属性,会改变报头长度,它的单位是32bi…...
好用的SQL工具盘点:从学习到工作总有一款适合你
标题一.入坑阶段(学习入门): 这个阶段一般就是小白,想学习SQL语言,然后到处找软件,找免费破解版找半天,找到了半天安装不下来,还可能把自己电脑搞中毒。 其实对于小白来说…...
Memcache介绍
Memcache介绍 Memcache是一个分布式内存对象缓存系统,其功能是为应用程序提供快速和可伸缩的数据存储。memcache使用简单,定义了相对少数几种操作(set,add,replace,get,flush_all等)…...
PTA:C课程设计(1)
山东大学(威海)2022级大一下C习题集(1)1-7-1 求幂级数展开的部分和1-7-2 查询水果价格1-7-3 猜数字游戏1-7-4 特殊a串数列求和1-7-5 成绩统计分析表1-7-6 换硬币1-7-7 验证“哥德巴赫猜想”1-7-1 求幂级数展开的部分和 #include&…...
第二十篇 ResNet——模型讲解
摘要 ResNet(Residual Neural Network)由微软研究院的Kaiming He等四名华人提出,通过使用ResNet Unit成功训练出了152层的神经网络,并在ILSVRC2015比赛中取得冠军,在top5上的错误率为3.57%,同时参数量比VGGNet低,效果非常明显。 模型的创新点在于提出残差学习的思…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
Python网页自动化Selenium中文文档
1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...
针对药品仓库的效期管理问题,如何利用WMS系统“破局”
案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...
