电子技术——负反馈特性
电子技术——负反馈特性

本节我们进一步深入介绍负反馈特性。
增益脱敏性
假设 β\betaβ 是一个常数。考虑下面的微分方程:
dAf=dA(1+Aβ)2dA_f = \frac{dA}{(1 + A\beta)^2} dAf=(1+Aβ)2dA
将上式除以 Af=A1+AβA_f = \frac{A}{1+A\beta}Af=1+AβA 得到:
dAfAf=11+AβdAA\frac{dA_f}{A_f} = \frac{1}{1+A\beta}\frac{dA}{A} AfdAf=1+Aβ1AdA
这里 dAfAf\frac{dA_f}{A_f}AfdAf 指的是 AfA_fAf 的变化百分比, dAA\frac{dA}{A}AdA 指的是 AAA 的变化百分比,这说明负反馈将不稳定的 AAA 的变化降低了 1+Aβ1+A\beta1+Aβ ,也就是反馈量的倒数倍,称为增益脱敏性。
带宽增加
考虑一个单极点的放大器的高频响应方程为:
A(s)=AM1+s/ωHA(s) = \frac{A_M}{1 + s/\omega_H} A(s)=1+s/ωHAM
则负反馈方程为:
Af(s)=A(s)1+βA(s)=AM/(1+AMβ)1+s/ωH(1+AMβ)A_f(s) = \frac{A(s)}{1 + \beta A(s)} = \frac{A_M / (1+A_M \beta)}{1 + s / \omega_H (1 + A_M\beta)} Af(s)=1+βA(s)A(s)=1+s/ωH(1+AMβ)AM/(1+AMβ)
这说明,中频带增益降低到了 AM/(1+AMβ)A_M / (1+A_M \beta)AM/(1+AMβ) 但是 −3dB-3dB−3dB 频率点增加到了:
ωHf=ωH(1+AMβ)\omega_{Hf} = \omega_H (1 + A_M\beta) ωHf=ωH(1+AMβ)
同样的方法我们可以证明,对于具有低频响应的放大器,其低频 −3dB-3dB−3dB 点减小到:
ωLf=ωL1+AMβ\omega_{Lf} = \frac{\omega_L}{1 + A_M \beta} ωLf=1+AMβωL
我们发现,具有负反馈的放大器的带宽增加,代价就是中频带增益减小,保证了增益带宽积不变。

减少干扰
负反馈可以减少噪声信号的干扰。然而,减少干扰只在特定的情况下起作用,考虑下面的情况:

上图是一个受到 VnV_nVn 干扰的信号源。输出信号由叠加定理得到:
Vo=VsA1+VnA1V_o = V_s A_1 + V_n A_1 Vo=VsA1+VnA1
我们定义 输出信噪比 为源信号分量除以噪声信号分量,则此时的输出信噪比我们记为:
S/I=VsA1VnA1=VsVnS/I = \frac{V_s A_1}{V_n A_1} = \frac{V_s}{V_n} S/I=VnA1VsA1=VnVs
接下来考虑下面的情况:

我们此时使用两个放大器, A2A_2A2 放大器不受输入端信号干扰,而原始 A1A_1A1 端受到信号 VnV_nVn 的干扰,我们使用负反馈网络保证整体的增益不变,由叠加定理可以写出:
Vo=VsA1A21+A1A2β+VnA11+A1A2βV_o = V_s \frac{A_1A_2}{1 + A_1A_2 \beta} + V_n \frac{A_1}{1 + A_1A_2 \beta} Vo=Vs1+A1A2βA1A2+Vn1+A1A2βA1
则此时的输出信噪比为:
S/I=VsVnA2S/I = \frac{V_s}{V_n} A_2 S/I=VnVsA2
比原来提升了 A2A_2A2 倍。
我们强调这种方法必须要求在源放大器前端联级一个不受输入干扰的放大器。这很常见,例如在音频放大系统中,最后一级通常是功率输出级,功率输出级会出现 电源嗡嗡声 的问题,这是由于功率输出级需要提供较大的电流,从而提供较大的功率,由于电源电流越大功率越大,电源的纹波就会越大,就会收到较大的电源输入噪声干扰,另外对于大功率滤波的成本和代价是比较昂贵的。功率输出级不需要较大的电压增益,但是需要较大的功率增益,因此我们可以在功率输出级之前联级一个具有较大增益的小信号放大器,该放大器不需要较大的电流,因此可以使用功率较小的电源,此时纹波更小,可以视为无输入干扰,然后通过整体的负反馈网络控制整体电压增益。此时就可以有效的减小电源嗡嗡声的问题。我们称较大增益的小信号放大器为 前置放大器 。
减小非线性失真
下图展示了一个放大器输入和输出之间的关系(a):

上面的传输函数的图像(a)是分段线性的,而不是整体线性的,因此,若输入一个较大的信号则会造成较大的非线性失真。
非线性失真的问题可以通过负反馈解决,我们称为 线性化 。假设我们使用的负反馈中 β=0.01\beta = 0.01β=0.01 ,并且假设图像(a) 中斜率最大的那一段的斜率为 100010001000 另外一段的斜率为 100100100 。此时引入负反馈之后的斜率变成了:
Af1=10001+1000×0.01=90.9A_{f1} = \frac{1000}{1 + 1000 \times 0.01} = 90.9 Af1=1+1000×0.011000=90.9
Af2=1001+100×0.01=50A_{f2} = \frac{100}{1 + 100 \times 0.01} = 50 Af2=1+100×0.01100=50
此时对应图像(b),我们发现图像整体变得更加的线性。但是代价是降低了放大器的增益,若想恢复增益,我们可以使用前置放大器,前置放大器不受非线性失真的影响,因为前置放大器处理小信号。
最后需要注意的,若放大器进入饱和区,则此时负反馈失效。因为此时增益变得非常非常小几乎是零,反馈量接近单位一。
相关文章:
电子技术——负反馈特性
电子技术——负反馈特性 本节我们进一步深入介绍负反馈特性。 增益脱敏性 假设 β\betaβ 是一个常数。考虑下面的微分方程: dAfdA(1Aβ)2dA_f \frac{dA}{(1 A\beta)^2} dAf(1Aβ)2dA 将上式除以 AfA1AβA_f \frac{A}{1A\beta}Af1AβA 得到࿱…...
网站移动端性能优化方法
移动端优化 click 的 300ms 延迟响应 click 的 300ms 延迟是由双击缩放(double tap to zoom)所导致的,由于用户可以进行双击缩放或者双击滚动的操作,当用户一次点击屏幕之后,浏览器并不能立刻判断用户是确实要打开这个链接,还是想要进行双击操作。因此,移动端浏览器就等…...
2023年AI语音会议汇总
2023年,AI语音领域学术会议精彩纷呈,语音之家汇总了国内外重要的会议呈现给大家,大家可根据时间统筹安排好2023年的学术活动交流行程。如果信息有误,欢迎指正。 ICASSP 2023 2023 IEEE International Conference on Acoustics, S…...
Mybatis持久层框架 | Mapper加载方式、目录结构解析
💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! Mapper(resource、class、package)加载方式 resource方式加载 通过resource或url加载单个mapper,接口文件与映射文件不在同一路径下,只能用re…...
九龙证券|创业板向未盈利企业敞开大门 考验投行估值定价能力
未盈余企业上市有了新选择。2月17日,全面实行股票发行注册制相关准则规矩发布施行。深交所发布《深圳证券交易所创业板股票上市规矩(2023年修订)》及《关于未盈余企业在创业板上市相关事宜的告诉》,“预计市值不低于50亿元&#x…...
「TCG 规范解读」第12章 TPM工作组 TCG身份验证研讨
可信计算组织(Ttrusted Computing Group,TCG)是一个非盈利的工业标准组织,它的宗旨是加强在相异计算机平台上的计算环境的安全性。TCG于2003年春成立,并采纳了由可信计算平台联盟(the Trusted Computing Platform Alli…...
Logstash:在 Logstash 管道中的定制的 Elasticsearch update by query
我们知道 Elasticsearch output plugin 为我们在 Logstash 的 pipeline 中向 Elasticsearch 的写入提供了可能。我们可以使用如下的格式向 Elasticsearch 写入数据: elasticsearch {hosts > ["https://localhost:9200"]index > "data-%{YYYY.M…...
Spring Cloud Kubernetes环境下使用Jasypt
前言最近半年着手开始做了基于微服务的中台项目,整个项目的技术栈采用的是Java Spring Cloud Kubernetes Istio。业务开放上还是相当顺利的。但是在安全审核上,运维组提出了一个简易。现在项目一些敏感配置,例如MySQL用户的密码࿰…...
Kotlin-面向对象
本片博客主要写创建对象,创建接口,创建抽象类,data关键字的作用 创建对象 如何声明一个对象,使用class关键字 格式为: class 对象名字(对象属性名:属性类型…){} 如果对象没有函数…...
循环、函数、对象——js基础练习
目录 一、循环练习 1.1 取款机案例 1.2 九九乘法表 1.3 根据数据生成柱形图 1.4 冒泡排序 1.6综合大练习 二、函数 2.1 转换时间案例 三、对象 1. 遍历数组对象 2. 猜数字游戏 3. 生成随机颜色 4. 学成在线页面渲染案例 一、循环练习 1.1 取款机案例 // 准备一个…...
精确控制 AI 图像生成的破冰方案,ControlNet 和 T2I-Adapter
ControlNet 和 T2I-Adapter 的突破性在哪里?有什么区别?其它为 T2I 扩散模型施加条件引导的相关研究ControlNet 和 T2I-Adapter 的实际应用效果如何?使用体验上,跟 SD原生支持的 img2img 有什么区别?ControlNet 在插画…...
让师生“不跑腿”,教育数据治理究竟有何魔力
当前,教育信息化新基础设施正在加紧建设,教育业务系统应用不断推进,各种软硬件平台源源不断地产生着教育数据。海量数据的汇聚和分析,能给教育系统带来什么?如何在教育数字化转型中,探索出基于数据驱动的新…...
力扣-寻找用户推荐人
大家好,我是空空star,本篇带大家了解一道简单的力扣sql练习题。 文章目录前言一、题目:584. 寻找用户推荐人二、解题1.正确示范①提交SQL运行结果2.正确示范②提交SQL运行结果3.正确示范③提交SQL运行结果4.其他总结前言 一、题目:…...
mmdetection测试阶段
首先需要训练,训练会自动生成:latest.pth 权重文件 根据权重文件生成“.pkl”文件; 下面以faster_rcnn为例,–out是只生成的权重文件地址,result是生成的pkl文件名; python ./tools/test.py ./configs/…...
【无标题】10.货币系统
题目描述: 在网友的国度中共有 n 种不同面额的货币,第 i 种货币的面额为 a[i],你可以 假设每一种货币都有无穷多张。为了方便,我们把货币种数为 n、 面额数组为 a[1..n] 的货币系统记作 (n,a)。 在一个完善的货币系统中,每一个非…...
【c++】类和对象6—运算符重载
文章目录加号()运算符重载左移(<<)运算符重载递增()运算符重载赋值()运算符重载关系运算符重载函数调用运算符重载运算符重载概念: 对已有的运算符重新进行定义&am…...
【SPSS】基础图形的绘制(条形图、折线图、饼图、箱图)详细操作过程
🤵♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞Ǵ…...
6、Fatfs系统移植
注意:挂载Fatfs笔记 Fatfs系统读写文件的时间是不固定的,随机性 搭载Fatfs的外设通信方式建议开启DMA方式,否则应避免中断打断时序,导致Fatfs出现FR_DISK_ERR(A hard error occurred in the low level disk I/O layer&…...
【数据结构与算法】数据结构的基本概念,时间复杂度
🍉内容专栏:【数据结构与算法】 🍉本文脉络:数据结构和算法的基本概念,时间复杂度 🍉本文作者:Melon西西 🍉发布时间 :2023.2.21 目录 一、引入: 二、数据结…...
【Python】变量类型,赋值+多个变量赋值
嗨害大家好鸭~我是小熊猫(✿◡‿◡) 好像还有一些小伙伴还不是很会python的基础鸭~ 没关系啦~这不是还有我小熊猫嘛 ~ 源码资料电子书:点击此处跳转文末名片获取 Python 变量类型 变量是存储在内存中的值, 这就意味着在创建变量时会在内存中开辟一个空间。 基于…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
在 Spring Boot 中使用 JSP
jsp? 好多年没用了。重新整一下 还费了点时间,记录一下。 项目结构: pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
Python实现简单音频数据压缩与解压算法
Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
文件上传漏洞防御全攻略
要全面防范文件上传漏洞,需构建多层防御体系,结合技术验证、存储隔离与权限控制: 🔒 一、基础防护层 前端校验(仅辅助) 通过JavaScript限制文件后缀名(白名单)和大小,提…...
VSCode 使用CMake 构建 Qt 5 窗口程序
首先,目录结构如下图: 运行效果: cmake -B build cmake --build build 运行: windeployqt.exe F:\testQt5\build\Debug\app.exe main.cpp #include "mainwindow.h"#include <QAppli...
C++ 类基础:封装、继承、多态与多线程模板实现
前言 C 是一门强大的面向对象编程语言,而类(Class)作为其核心特性之一,是理解和使用 C 的关键。本文将深入探讨 C 类的基本特性,包括封装、继承和多态,同时讨论类中的权限控制,并展示如何使用类…...
