yolov7简化yaml配置文件
yolov7代码结构简单,效果还好,但是动辄超过70几个模块的配置文件对于想要对网络进行魔改的朋友还是不怎么友好的,使用最小的tiny也有77个模块
代码的整体结构简单,直接将ELAN结构化写成一个类就能像yolov5一样仅仅只有20几个模块,方便对网络结构进行魔改,看着也不容易头晕。
v7的网络结构可以参看:理解yolov7网络结构_yolov7的常用anchor_athrunsunny的博客-CSDN博客
这里先放一张改好的网络结构运行结果
好,上主菜,这里对tiny的结构进行修改,v7的修改类似就是在ELAN这个类中增加卷积层就行
先创建配置文件yolov7-tiny-ELAN.yaml
# parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multipleactivation: nn.ReLU()
# anchors
anchors:- [10,13, 16,30, 33,23] # P3/8- [30,61, 62,45, 59,119] # P4/16- [116,90, 156,198, 373,326] # P5/32# yolov7-tiny backbone
backbone:# [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True[[-1, 1, Conv, [32, 3, 2, None, 1]], # 0-P1/2[-1, 1, Conv, [64, 3, 2, None, 1]], # 1-P2/4[-1, 1, ELAN, [64, 1, 1, None, 1]], # 2[-1, 1, MP, []], # 3-P3/8[-1, 1, ELAN, [128, 1, 1, None, 1]], # 4[-1, 1, MP, []], # 5-P4/16[-1, 1, ELAN, [256, 1, 1, None, 1]], # 6[-1, 1, MP, []], # 7-P5/32[-1, 1, ELAN, [512, 1, 1, None, 1]], # 8]# yolov7-tiny head
head:[[-1, 1, SPPCSPCSIM, [256]], # 9[-1, 1, Conv, [128, 1, 1, None, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[6, 1, Conv, [128, 1, 1, None, 1]], # route backbone P4[[-1, -2], 1, Concat, [1]], # 13[-1, 1, ELAN, [128, 1, 1, None, 1]], # 14[-1, 1, Conv, [64, 1, 1, None, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[4, 1, Conv, [64, 1, 1, None, 1]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, ELAN, [64, 1, 1, None, 1]], # 19[-1, 1, Conv, [128, 3, 2, None, 1]],[[-1, 14], 1, Concat, [1]],[-1, 1, ELAN, [128, 1, 1, None, 1]], # 22[-1, 1, Conv, [256, 3, 2, None, 1]],[[-1, 9], 1, Concat, [1]],[-1, 1, ELAN, [256, 1, 1, None, 1]], # 25[19, 1, Conv, [128, 3, 1, None, 1]],[22, 1, Conv, [256, 3, 1, None, 1]],[25, 1, Conv, [512, 3, 1, None, 1]],[[26,27,28], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)]
在common.py中增加
class ELAN(nn.Module):# Yolov7 ELAN with args(ch_in, ch_out, kernel, stride, padding, groups, activation)def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):super().__init__()c_ = int(c2 // 2)c_out = c_ * 4self.cv1 = Conv(c1, c_, k=k, s=s, p=p, g=g, act=act)self.cv2 = Conv(c1, c_, k=k, s=s, p=p, g=g, act=act)self.cv3 = Conv(c_, c_, k=3, s=s, p=p, g=g, act=act)self.cv4 = Conv(c_, c_, k=3, s=s, p=p, g=g, act=act)self.cv5 = Conv(c_out, c2, k=k, s=s, p=p, g=g, act=act)def forward(self, x):x1 = self.cv1(x)x2 = self.cv2(x)x3 = self.cv3(x2)x4 = self.cv4(x3)x5 = torch.cat((x1, x2, x3, x4), 1)return self.cv5(x5)class SPPCSPCSIM(nn.Module):def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):super(SPPCSPCSIM, self).__init__()c_ = int(2 * c2 * e) # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])self.cv3 = Conv(4 * c_, c_, 1, 1)self.cv4 = Conv(2 * c_, c2, 1, 1)def forward(self, x):x1 = self.cv1(x)x2 = self.cv2(x)x3 = torch.cat([x2] + [m(x2) for m in self.m], 1)x4 = self.cv3(x3)x5 = torch.cat((x1, x4), 1)return self.cv4(x5)
在yolo.py中的parse_model中增加
if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, SPPCSPC, RepConv,RFEM, ELAN, SPPCSPCSIM):c1, c2 = ch[f], args[0]if c2 != no: # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in [BottleneckCSP, C3, C3TR, C3Ghost, C3x]:args.insert(2, n) # number of repeatsn = 1
使用 yolov7-tiny-ELAN.yaml在yolo.py中运行就能看到上面结构精简后的网络结构图。
相关文章:

yolov7简化yaml配置文件
yolov7代码结构简单,效果还好,但是动辄超过70几个模块的配置文件对于想要对网络进行魔改的朋友还是不怎么友好的,使用最小的tiny也有77个模块 代码的整体结构简单,直接将ELAN结构化写成一个类就能像yolov5一样仅仅只有20几个模块&…...

pprof火焰图性能优化
pprof火焰图性能优化 火焰图(flame graph)是性能分析的利器,在go1.1之前的版本我们需要借助go-torch生成,在go1.1后go tool pprof集成了此功能,今天就来说说如何使用其进行性能优化 在你启动http server的地方直接加入导入: _ “net/http/pprof” 获取…...
Greenplum 查找数据目录占用最大的表
背景 社区中某同学提出问题: 某环境磁盘占用空间较大,于是想找到数据目录占用最大的表。使用常规查询找不出来,于是到数据目录下分析filenode,找到3个filenode占了400G。然而根据filenode从pg_class中确找不到对应的relfilenode。…...

Java 基于 SpringBoot 的酒店管理系统,附源码和数据库
博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W,Csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 文章目录 一、前言介绍二、系统结构三、系统详细实现3.1用户信息管理3.2会员信息管理3.3客房信息管理3.4收藏…...

LinkedList(4):多线程LinkedList 不安全情况
多线程不安全演示,线程越多,现象越明显,这边只启了四个线程。 package com.example.demo;import java.util.LinkedList; import java.util.UUID;public class LInkedListThread {public static void main(String[] args) {final LinkedList&…...

3D印刷电路板在线渲染查看工具
从概念上讲,这是有道理的,因为PCB印制电路板上的走线从一个连接到下一个连接的路线基本上是平面的。 然而,我们生活在一个 3 维世界中,能够以这种方式可视化电路以及相应的组件,对于设计过程很有帮助。本文将介绍KiCad…...
【mysql】出现 slow sql 问题及建议
文章目录 1. SQL 执行什么情况下会变慢?2. 影响 SQL 语句执行效率的主要因素有哪些?3. 慢 SQL 是如何拖垮数据库的?4. 最佳实践建议 1. SQL 执行什么情况下会变慢? ● 数据量增加:数据库中的数据量可能会逐渐增加&…...

element树形筛选
<el-inputv-model"projectName"placeholder"请输入名称"clearablemaxlength"10"clear"clearTree" /> <el-divider /> <el-treeref"tree"class"filter-tree":data"treeList":props"…...

打字侠:一款专业的中文打字网站
打字侠第一个正式版发布啦!!! 虽然离期望的样子还有一段路要走,不过能看到它正式发布,我还是很激动哟! 打字侠是一款面向中学生和大学生的在线打字软件,它通过合理的课程设计和精美的图形界面帮…...
C++ std::default_random_engine的使用
使用std::default_random_engine可生成不同分布的随机数,下面使用实例来说明其使用。 随机生成0-1间的实数 //利用当前时间生成的种子,可保证每次生成的值都不一样 unsigned seed std::chrono::system_clock::now().time_since_epoch().count(); std:…...

软件设计模式(二):工厂、门面、调停者和装饰器模式
前言 在这篇文章中,荔枝将会梳理软件设计模式中的四种:工厂模式、Facade模式、Mediator模式和装饰器Decorator模式。其中比较重要的就是工厂模式和装饰器模式,工厂模式在开发中使用的频数比较高。希望荔枝的这篇文章能讲清楚哈哈哈哈…...
pdf文件签名的问题解决
今天解决冲突的jar,结果出现下面的问题 java.lang.IllegalAccessError: tried to access method org.bouncycastle.asn1.DERNull.<init>()V from class com.itextpdf.text.pdf.security.PdfPKCS7at com.itextpdf.text.pdf.security.PdfPKCS7.getEncodedPKCS7…...

Node.js安装使用
目录 一、安装 Node.js二、环境变量配置三、npm常用命令 Node.js 是一个强大的运行时环境,它使您能够在服务器端运行 JavaScript 代码。它非常流行,用于构建 Web 应用程序、API 和各种后端服务。 一、安装 Node.js 1、访问 Node.js 官方网站。 在主页上…...

sql:SQL优化知识点记录(七)
(1)索引优化5 (2)索引优化6 (3)索引优化7 查询*, 百分号加右边,否则索引会失效 没建立索引之前都是全表扫描 没建立索引 建立索引: 建立索引 id是主键,他也…...

机器学习:基于梯度下降算法的线性拟合实现和原理解析
机器学习:基于梯度下降算法的线性拟合实现和原理解析 线性拟合梯度下降算法步骤算法实现数据可视化(动态展示)应用示例 当我们需要寻找数据中的趋势、模式或关系时,线性拟合和梯度下降是两个强大的工具。这两个概念在统计学、机器…...
关键点数据增强
1.关键点数据增强 # 关键点数据增强 from PIL import Image, ImageDraw import random import json from pathlib import Path# 创建一个黑色背景图像 width, height 5000, 5000 # 图像宽度和高度 background_color (0, 0, 0) # 黑色填充# 随机分布图像 num_images 1 # …...

最小化安装移动云大云操作系统--BCLinux-for-Euler-22.10-everything-x86_64-230316版
CentOS 结束技术支持,转为RHEL的前置stream版本后,国内开源Linux服务器OS生态转向了开源龙蜥和开源欧拉两大开源社区,对应衍生出了一系列商用Linux服务器系统。BCLinux-for-Euler-22.10是中国移动基于开源欧拉操作系统22.03社区版本深度定制的…...
003传统图机器学习、图特征工程
文章目录 一. 人工特征工程、连接特征二. 在节点层面对连接特征进行特征提取三. 在连接层面对连接特征进行特征提取四. 在全图层面对连接特征进行特征提取 一. 人工特征工程、连接特征 节点、连接、子图、全图都有各自的属性特征, 属性特征一般是多模态的。除属性特…...

Apache Tomcat 漏洞复现
文章目录 Apache Tomcat 漏洞复现1. Tomcat7 弱密码和后端 Getshell 漏洞1.1 漏洞描述1.2 漏洞复现1.3 漏洞利用1.3.1 jsp小马1.3.2 jsp大马 1.4 安全加固 2. Aapache Tomcat AJP任意文件读取/包含漏洞2.1 漏洞描述2.1 漏洞复现2.2 漏洞利用工具2.4 修复建议 3. 通过 PUT 方法的…...
Oracle-常用权限-完整版
-- 创建用户 create user TCK identified by oracle; -- 赋权 grant connect,resource to TCK; -- 删除权限 revoke select any table from TCK -- 删除用户 CASCADE(用户下的数据级联删除) drop user TCK CASCADE -- 查询权限列表 select * from user_role_privs; select * fr…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
comfyui 工作流中 图生视频 如何增加视频的长度到5秒
comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...