XL-LightHouse 与 Flink 和 ClickHouse 流式大数据统计系统
一个Flink任务只能并行处理一个或少数几个数据流,而XL-LightHouse一个任务可以并行处理数万个、几十万个数据流;
一个Flink任务只能实现一个或少数几个数据指标,而XL-LightHouse单个任务就能支撑大批量、数以万计的数据指标。
1、XL-LightHouse :
- 1、再也不需要用 Flink、Spark、ClickHouse 或者基于 Redis 这种臃肿笨重的方案跑数了;
- 2、再也不需要疲于应付对个人价值提升没有多大益处的数据统计需求了,能够帮助您从琐碎反复的数据统计需求中抽身出来,从而专注于对个人提升、对企业发展更有价值的事情;
- 3、轻松帮您实现任意细粒度的监控指标,是您监控服务运行状况,排查各类业务数据波动、指标异常类问题的好帮手;
- 4、培养数据思维,辅助您将所从事的工作建立数据指标体系,量化工作产出,做专业严谨的职场人,创造更大的个人价值;
2、流式统计虽然是属于流式计算的一种计算形式
流式统计无外乎Count运算、Sum运算、Bitcount运算(count distinct)、Max运算、Min运算、Avg运算、Seq运算(时序数据)、Dimens运算(维度划分)、Limit运算(topN/lastN)
3、Flink用于流式统计存在缺陷
3-1、资源利用率低
Flink的资源利用率低要从两个角度来看,一个是集群运行的拓扑结构,另一个是Flink任务执行的特性。
3-2、运算性能低
3-3、接入成本较高
(1)、Flink面向专业的大数据研发人员,大量统计指标的实现需要耗费大量的研发成本。
(2)、由于Flink自身在流式统计领域的基础功能并不完善,所以很多场景下都需要研发人员依据统计任务的数据量、统计周期的粒度、数据倾斜状况等因素进行特定的优化。所以使用Flink实现很多相类似的功能,由于数据量差异、统计周期的不同,程序的实现方式也可能截然不同
3-4、运维成本高、运算资源成本高
对比XL-LightHouse,Flink的运维成本更高,体现在几个方面:
(1)、实现相同的流式统计需求,Flink集群规模要明显大于XL-LightHouse的集群规模,导致运维成本增加。
(2)、由于Flink集群面向专业的研发人员,Flink集群的运转是由集群维护人员和Flink任务的研发人员共同参与,如果集群要进行版本升级、集群扩容、日常维护、数据迁移等操作均需要与研发人员事先沟通、达成默契,很多类似版本升级的操作会涉及相关任务的升级改造。如果集群规模庞大、涉及研发人员、相关任务较多的话,那这个过程也必然会耗费了较大的维护成本
4、ClickHouse用于流式统计存在缺陷
-
ClickHouse适用场景的特点
(1)单个或较少数量的应用场景,且每个应用场景都有海量的数据;
(2)业务场景有大量的维度字段,可能需要按照十几个甚至几十个以上的维度随意组合进行多维度即席查询操作;
(3)业务场景有明细查询的需求;
(4)不同数据源之间可能有join查询的需求; -
ClickHouse的缺点
(1)由于每次查询都需要遍历海量数据,所以并发度支持有限;
(2)由于系统内存储着海量的明细数据,集群规模庞大、结构复杂,维护成本高昂;
(3)每次查询都要遍历数据,进行实时统计运算,需要耗费的大量的内存和CPU资源;
(4)数据接入需要进行各种层面的优化,使用门槛较高、面向专业的大数据研发人员使用;
(5)接入成本高、维护成本高、服务器成本高,使用门槛高,对中小企业不太友好;
5、XL-LightHouse的特性
(1)可以支持高并发查询统计结果
(2)不支持明细查询,如果想要支持明细查询需要借助于其他工具实现
(3)不支持明细查询,如果想要支持明细查询需要借助于其他工具实现

6、应用场景统计
点击量:
1、每5分钟_点击量
2、每5分钟_各ICON_点击量
3、每小时_点击量
4、每小时_各ICON_点击量
5、每天_总点击量
6、每天_各Tab_总点击量
7、每天_各ICON_总点击量
点击UV:
1、每5分钟_点击UV
2、每小时_点击UV
3、每小时_各ICON_点击UV
4、每天_总点击UV
5、每天_各ICON_总点击UV
支付成功订单数据统计
订单量:
1、每10分钟_订单量
2、每10分钟_各商户_订单量
3、每10分钟_各省份_订单量
4、每10分钟_各城市_订单量
5、每小时_订单量
6、每天_订单量
7、每天_各商户_订单量
8、每天_各省份_订单量
9、每天_各城市_订单量
10、每天_各价格区间_订单量
11、每天_各应用场景_订单量
交易金额:
1、每10分钟_成交金额
2、每10分钟_各商户_成交金额top100
3、每10分钟_各省份_成交金额
4、每10分钟_各城市_成交金额
5、每小时_成交金额
6、每小时_各商户_成交金额
7、每天_成交金额
8、每天_各商户_成交金额
9、每天_各省份_成交金额
10、每天_各城市_成交金额
11、每天_各应用场景_成交金额
下单用户数:
1、每10分钟_下单用户数
2、每10分钟_各商户_下单用户数
3、每10分钟_各省份_下单用户数
4、每10分钟_各城市_下单用户数
5、每小时_下单用户数
6、每天_下单用户数
7、每天_各商户_下单用户数
8、每天_各省份_下单用户数
9、每天_各城市_下单用户数
10、每天_各价格区间_下单用户数
11、每天_各应用场景_下单用户数
- 资讯类场景使用演示 dtstep.com/archives/4262.html
- 电商类场景使用演示 dtstep.com/archives/4286.html
- 即时通讯类场景使用演示 dtstep.com/archives/4291.html
- 技术类场景使用演示 dtstep.com/archives/4298.html
项目地址:
https://github.com/xl-xueling/xl-lighthouse
https://github.com/xl-xueling/xl-lighthouse.git
https://gitee.com/mirrors/XL-LightHouse.git
参考文档:
1、项目介绍
- dtstep.com/archives/4455.html
2、Git地址
- https://github.com/xl-xueling/xl-lighthouse.git
- xl-lighthouse: XL-LightHouse是一套支持大数据量、支持超高并发的通用型流式大数据统计平台,常见的应用场景比如:PV、UV统计,电商销售额统计、日志数据统计、接口调用量、耗时情况等统计,支持多维度统计,支持各种复杂的条件筛选和逻辑判断,一键部署,一行代码接入,轻松实现各种海量数据实时统计,帮助企业以更低的成本快速搭建起数据指标体系,是企业降本增效的好帮手!
3、交流社区
- DTStep
4、项目设计
- dtstep.com/archives/4227.html
5、一键部署
- dtstep.com/archives/4257.html
6、XL-Formula使用
- dtstep.com/archives/4215.html
7、Web服务操作说明
- dtstep.com/archives/4233.html
8、Hello World
- dtstep.com/archives/4301.html
9、适用场景
- 资讯类场景使用演示 dtstep.com/archives/4262.html
- 电商类场景使用演示 dtstep.com/archives/4286.html
- 即时通讯类场景使用演示 dtstep.com/archives/4291.html
- 技术类场景使用演示 dtstep.com/archives/4298.html
10、版权声明
- dtstep.com/archives/4206.html
11、使用反馈
- dtstep.com/community/ldp-issue
12、依赖组件
- dtstep.com/archives/4445.html
相关文章:
XL-LightHouse 与 Flink 和 ClickHouse 流式大数据统计系统
一个Flink任务只能并行处理一个或少数几个数据流,而XL-LightHouse一个任务可以并行处理数万个、几十万个数据流; 一个Flink任务只能实现一个或少数几个数据指标,而XL-LightHouse单个任务就能支撑大批量、数以万计的数据指标。 1、XL-LightHo…...
【postgresql 基础入门】创建数据库的方法,存储位置,决定自己的数据的访问用户和范围
创建数据库 专栏内容: postgresql内核源码分析手写数据库toadb并发编程 开源贡献: toadb开源库 个人主页:我的主页 管理社区:开源数据库 座右铭:天行健,君子以自强不息;地势坤,君…...
科技云报道:AI时代,对构建云安全提出了哪些新要求?
科技云报道原创。 随着企业上云的提速,一系列云安全问题也逐渐暴露出来,云安全问题得到重视,市场不断扩大。 Gartner 发布“2022 年中国 ICT 技术成熟度曲线”显示,云安全已处于技术萌芽期高点,预期在2-5年内有望达到…...
如何让 Llama2、通义千问开源大语言模型快速跑在函数计算上?
:::info 本文是“在Serverless平台上构建AIGC应用”系列文章的第一篇文章。 ::: 前言 随着ChatGPT 以及 Stable Diffusion,Midjourney 这些新生代 AIGC 应用的兴起,围绕AIGC应用的相关开发变得越来越广泛,有呈井喷之势,从长远看这波应用的爆…...
Linux内核源码分析 (B.2)虚拟地址空间布局架构
Linux内核源码分析 (B.2)虚拟地址空间布局架构 文章目录 Linux内核源码分析 (B.2)虚拟地址空间布局架构一、Linux内核整体架构及子系统二、Linux内核内存管理架构 一、Linux内核整体架构及子系统 Linux内核只是操作系统当中的一部分,对下管理系统所有硬件设备&…...
Spring系列文章:Spring使用JdbcTemplate
一、简介 JdbcTemplate是Spring提供的⼀个JDBC模板类,是对JDBC的封装,简化JDBC代码。 当然,你也可以不⽤,可以让Spring集成其它的ORM框架,例如:MyBatis、Hibernate等。 第一步:引入依赖 <d…...
[matlab]cvx安装后测试代码
测试环境: windows10 x64 matlab2023a 代码来自官方网站:CVX: Matlab Software for Disciplined Convex Programming | CVX Research, Inc. m 20; n 10; p 4; A randn(m,n); b randn(m,1); C randn(p,n); d randn(p,1); e rand; cvx_beginva…...
【css】margin:auot什么情况下失效
margin:auto只对块级元素有效果,并且在正常文档流margin:automargin:0 auto,css默认在正常文档流里面margin-top和margin-bottom是0 为什么margin: auto能实现水平居中,而垂直居中不行? 一般子…...
linux的dirty page回写磁盘过程中是否允许并发写入更新page?
概述 众所周知Linux内核write系统调用采用pagecache机制加速写入过程,避免write系统调用长时间block应用进程,用户态进程执行write调用的时候,内核只是将用户态buffer copy到内核的pagecache当中,write系统调用就返回了,完全不需要等待数据完全写入存储设备,因为存储设备…...
Docker-基础命令使用
文章目录 前言命令帮助命令执行示意图docker rundocker psdocker inspectdocker execdocker attachdocker stopdocker startdocker topdocker rmdocker prune参考说明 前言 本文主要介绍Docker基础命令的使用方法。 命令帮助 Docker命令获取帮助方法 # docker -h Flag shor…...
【Python 程序设计】Python 中的类型提示【06/8】
目录 一、说明 二、什么是动态类型? 2.1 为什么要使用类型提示? 2.2 局限性 三、基本类型提示 3.1 声明变量的类型 3.2 函数注释 四、Python 中的内置类型 4.1 原子类型与复合类型 五、函数注释 5.1 如何指定函数的参数类型和返回类型 5.2 在函数签名中…...
78 # koa 中间件的实现
上上节实现了上下文的,上一节使用了一下中间件,这一节来实现 koa 的中间件这个洋葱模型。 思路: 储存用户所有的 callback将用户传递的 callback 全部组合起来(redux 里的 compose)组合成一个线性结构依次执行&#…...
国产操作系统麒麟v10中遇到的一些问题
下载pycharm:直接在应用商店 目标:主机1安装了虚拟机,主机2要ping通主机1安装的虚拟机。 前提:主机1,主机2在同一局域网下,同一网段。 网络配置 因为虚拟机的网段不在局域网网段内,局域网下…...
Gridea+GitPage+Gittalk 搭建个人博客
👋通过GrideaGitPage 搭建属于自己的博客! 👻GitPage 负责提供 Web 功能! 😽Gridea 作为本地编辑器,方便 push 文章! 🏷本文讲解如何使用 GrideaGitPage 服务域名(可选&a…...
代码质量保障第2讲:单元测试 - 浅谈单元测试
代码质量保障第2讲:单元测试 - 浅谈单元测试 本文是代码质量保障第2讲,浅谈单元测试。单元测试(unit testing),是指对软件中的最小可测试单元进行检查和验证。这是基础,所以围绕着单元测试,我从…...
“五度晟企通”企业发展服务平台正式发布,帮扶企业行稳致远!
在数字中国建设的大背景下,“五度易链”以企业实际发展需求为牵引,以帮扶企业行稳致远为目标,基于全体量产业大数据,运用NLP、AI等新一代信息技术,打造了数字化ToB企业发展服务平台“五度晟企通”,旨在以数…...
Java类和对象(七千字详解!!!带你彻底理解类和对象)
目录 一、面向对象的初步认知 1、什么是面向对象 2、面向对象和面向过程 (1)传统洗衣服的过程 (2)现代洗衣服过程 编辑 二、类的定义和使用 1、类的定义格式 三、类的实例化 1、什么是实例化 2、类和对象说明 四、t…...
机器学习笔记:node2vec(论文笔记:node2vec: Scalable Feature Learning for Networks)
2016 KDD 1 intro 利用graph上的节点相似性,对这些节点进行embedding 同质性:节点和其周围节点的embedding比较相似 蓝色节点和其周围的节点结构等价性 结构相近的点embedding相近 比如蓝色节点,都处于多个簇的连接处 2 随机游走 2.1 介绍…...
go基础10 -字符串的高效构造与转换
前面提到过,Go原生支持通过/操作符来连接多个字符串以构造一个更长的字符串,并且通过/操作符的字符串连接构造是最自然、开发体验最好的一种。 但Go还提供了其他一些构造字符串的方法,比如: ● 使用fmt.Sprintf; ● 使…...
VR钢铁实训 | 铁前事业部虚拟仿真培训软件
随着科技的发展,虚拟现实技术在各个行业中的应用越来越广泛。在钢铁冶炼行业中,VR技术也逐渐得到了应用,其中铁前事业部虚拟仿真培训软件就是一项非常有优势的技术。 铁前事业部虚拟仿真培训软件是广州华锐互动打造的《钢铁生产VR虚拟培训系统…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...
