当前位置: 首页 > news >正文

机器学习实战-系列教程5:手撕线性回归4之非线性回归(项目实战、原理解读、源码解读)

🌈🌈🌈机器学习 实战系列 总目录

本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传

手撕线性回归1之线性回归类的实现
手撕线性回归2之单特征线性回归
手撕线性回归3之多特征线性回归
手撕线性回归4之非线性回归

11、非线性模型

当得到一个回归方程会,得到一条直线来拟合这个数据的统计规律,但是实际中用这样的简单直线很显然并不能拟合出统计规律,所谓线性回归比如两个变量之间关系就直接用一条直线来拟合,2个变量和一个1个变量的关系就用一个平面来拟合。在数学就是一个一元一次和多元一次函数的映射。非线性就是有多次,也就是说不再是一个直线了,可能是二次或者更高,也可以用三角函数来进行非线性变换。

11.1 读入数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from linear_regression import LinearRegression
data = pd.read_csv('../data/non-linear-regression-x-y.csv')
x = data['x'].values.reshape((data.shape[0], 1))
y = data['y'].values.reshape((data.shape[0], 1))
data.head(10)
plt.plot(x, y)
plt.show()
  1. 导包
  2. 读入数据
  3. 得到x数据
  4. 得到y数据
  5. 取前10个
  6. 将x和y画图

打印结果:
在这里插入图片描述

11.2 多项式非线性变换函数

polynomial_degree是一个下面generate_polynomials这个多项式函数需要设置的参数
不同的参数产生的数据是怎样的呢?
如有一个数据[a,b]:
当degree=1时,kernel变换后的数据(仅为增加一个偏置项) 为:[1,a,b]
当degree=2时,kernel变换后的数据为:[1,a,b, a 2 a^2 a2,ab, b 2 b^2 b2]
当degree=3时,kernel变换后的数据为:[1,a,b, a 2 a^2 a2,ab, b 2 , a 2 b , a b 2 , a 3 , b 3 b^2,a^2b,ab^2,a^3,b^3 b2,a2b,ab2,a3,b3]
以此类推

import numpy as np
from .normalize import normalize
def generate_polynomials(dataset, polynomial_degree, normalize_data=False):features_split = np.array_split(dataset, 2, axis=1)dataset_1 = features_split[0]dataset_2 = features_split[1](num_examples_1, num_features_1) = dataset_1.shape(num_examples_2, num_features_2) = dataset_2.shapeif num_examples_1 != num_examples_2:raise ValueError('Can not generate polynomials for two sets with different number of rows')if num_features_1 == 0 and num_features_2 == 0:raise ValueError('Can not generate polynomials for two sets with no columns')if num_features_1 == 0:dataset_1 = dataset_2elif num_features_2 == 0:dataset_2 = dataset_1num_features = num_features_1 if num_features_1 < num_examples_2 else num_features_2dataset_1 = dataset_1[:, :num_features]dataset_2 = dataset_2[:, :num_features]polynomials = np.empty((num_examples_1, 0))for i in range(1, polynomial_degree + 1):for j in range(i + 1):polynomial_feature = (dataset_1 ** (i - j)) * (dataset_2 ** j)polynomials = np.concatenate((polynomials, polynomial_feature), axis=1)if normalize_data:polynomials = normalize(polynomials)[0]return polynomials

11.3 三角函数非线性变换函数

import numpy as np
def generate_sinusoids(dataset, sinusoid_degree):num_examples = dataset.shape[0]sinusoids = np.empty((num_examples, 0))for degree in range(1, sinusoid_degree + 1):sinusoid_features = np.sin(degree * dataset)sinusoids = np.concatenate((sinusoids, sinusoid_features), axis=1)      return sinusoids

11.4 执行线性回归

num_iterations = 50000  
learning_rate = 0.02  
polynomial_degree = 15  
sinusoid_degree = 15  
normalize_data = True  
linear_regression = LinearRegression(x, y, polynomial_degree, sinusoid_degree, normalize_data)
(theta, cost_history) = linear_regression.train( learning_rate, num_iterations)
print('开始损失: {:.2f}'.format(cost_history[0]))
print('结束损失: {:.2f}'.format(cost_history[-1]))
  1. 迭代次数
  2. 学习率
  3. 多项式次数
  4. 三角函数次数
  5. 类实例化成对象
  6. 执行train函数和之前一样
  7. 打印损失

打印结果:

开始损失: 2274.66
结束损失: 35.04

11.5 损失变化过程

theta_table = pd.DataFrame({'Model Parameters': theta.flatten()})plt.plot(range(num_iterations), cost_history)
plt.xlabel('Iterations')
plt.ylabel('Cost')
plt.title('Gradient Descent Progress')
plt.show()

这里和之前的过程是一样的,打印结果:
在这里插入图片描述
这里的损失在很早的时候就已经下降的很低了,因为次数设置的过大导致模型过拟合了

11.6 回归线

predictions_num = 1000
x_predictions = np.linspace(x.min(), x.max(), predictions_num).reshape(predictions_num, 1);
y_predictions = linear_regression.predict(x_predictions)
plt.scatter(x, y, label='Training Dataset')
plt.plot(x_predictions, y_predictions, 'r', label='Prediction')
plt.show()

这里的回归线实现过程还是和之前的一样,打印结果:
在这里插入图片描述
这就是用非线性回归实现的最后曲线拟合的结果

手撕线性回归1之线性回归类的实现
手撕线性回归2之单特征线性回归
手撕线性回归3之多特征线性回归
手撕线性回归4之非线性回归

相关文章:

机器学习实战-系列教程5:手撕线性回归4之非线性回归(项目实战、原理解读、源码解读)

&#x1f308;&#x1f308;&#x1f308;机器学习 实战系列 总目录 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 手撕线性回归1之线性回归类的实现 手撕线性回归2之单特征线性回归 手撕线性回归3之多特征线性回归 手撕线性回归4之非线性回归 1…...

【C语言基础】那些你可能不知道的C语言“潜规则”

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…...

android framework之Applicataion启动流程分析(三)

现在再回顾一下Application的启动流程&#xff0c;总的来说&#xff0c;虽然进程的发起是由ATMS服务发起的&#xff0c;但是进程的启动还是由AMS负责&#xff0c;所以需要调用AMS的startProcess()接口完成进程启动流程&#xff0c;AMS要处理的事情很多&#xff0c;它将事务交给…...

使用Scrapy框架集成Selenium实现高效爬虫

引言&#xff1a; 在网络爬虫的开发中&#xff0c;有时候我们需要处理一些JavaScript动态生成的内容或进行一些复杂的操作&#xff0c;这时候传统的基于请求和响应的爬虫框架就显得力不从心了。为了解决这个问题&#xff0c;我们可以使用Scrapy框架集成Selenium来实现高效的爬…...

Maven 和 Gradle 官方文档及相关资料的网址集合

文章目录 官方MavenGradle 笔者MavenGradle 官方 Maven Maven 仓库依赖包官方查询通道&#xff1a;https://mvnrepository.com/ Maven 插件官方文档&#xff1a;https://maven.apache.org/plugins/ 安卓依赖包官方查询通道*&#xff1a;https://maven.google.com/web/ Gra…...

docker概念、安装与卸载

第一章 docker概念 Docker 是一个开源的应用容器引擎。 Docker 诞生于2013年初&#xff0c;基于 Go 语言实现&#xff0c;dotCloud 公司出品&#xff0c;后改名为 Docker Inc。 Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中&#xff0c;然后发…...

elasticsearch访问9200端口 提示需要登陆

项目场景&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; elasticsearch访问9200端口 提示需要登陆 问题描述 提示&#xff1a;这里描述项目中遇到的问题&#xff1a; 在E:\elasticsearch-8.9.1-windows-x86_64\elasticsearch-8.9.1\bin目录下输入命令 ela…...

【深度学习】 Python 和 NumPy 系列教程(一):Python基本数据类型:1、数字(整数、浮点数)及相关运算;2、布尔值

目录 一、前言 二、实验环境 三、Python基本数据类型 1. 数字 a. 整数&#xff08;int&#xff09; b. 浮点数&#xff08;float&#xff09; c. 运算 运算符 增强操作符 代码整合 d. 运算中的类型转换 e. 运算函数abs、max、min、int、float 2. 布尔值&#xff08…...

无swing,高级javaSE毕业之贪吃蛇游戏(含模块构建,多线程监听服务)

JavaSE&#xff0c;无框架实现贪吃蛇 文章目录 JavaSE&#xff0c;无框架实现贪吃蛇1.整体思考2.可能的难点思考2.1 如何表示游戏界面2.2 如何渲染游戏界面2.3 如何让游戏动起来2.4 蛇如何移动 3.流程图制作4.模块划分5.模块完善5.0常量优化5.1监听键盘服务i.输入存储ii.键盘监…...

HDD-FAT32 ZIP-FAT32 HDD-FAT16 ZIP-FAT16 HDD-NTFS

FAT32、FAT16指的是分区格式&#xff0c; FAT16单个文件最大2G FAT32单个文件最大4G NTFS单个文件大于4G HDD是硬盘启动 ZIP是软盘启动 U盘选HDD HDD-NTFS...

王道数据结构编程题 二叉树

二叉树定义 以下为本文解题代码的二叉树定义。 struct TreeNode {int val;TreeNode* left, *right;TreeNode(int val 0, TreeNode* left nullptr, TreeNode* right nullptr): val(val), left(left), right(right) {} };非递归后序遍历 题目描述 编写后序遍历二叉树的非递…...

登录怎么实现的,密码加密了嘛?使用明文还是暗文,知道怎么加密嘛?

在Java中登录功能的实现通常包括以下步骤&#xff0c;其中密码应该以加密形式存储在数据库中&#xff0c;而不以明文形式存储&#xff0c;以增强安全性&#xff1a; 登录功能的实现步骤&#xff1a; 用户输入&#xff1a; 用户在登录页面上输入用户名和密码。 传输到服务器&a…...

Nginx和Tomcat负载均衡实现session共享

以前的项目使用Nginx作为反向代理实现了多个Tomcat的负载均衡&#xff0c;为了实现多个Tomcat之间的session共享&#xff0c;使用了开源的Memcached-Session-Manager框架。 此框架的优势&#xff1a; 1、支持Tomcat6和Tomcat7 2、操作粘性或不黏性Session 3、没有单点故障 4、T…...

【算法题】210. 课程表 II

题目&#xff1a; 现在你总共有 numCourses 门课需要选&#xff0c;记为 0 到 numCourses - 1。给你一个数组 prerequisites &#xff0c;其中 prerequisites[i] [ai, bi] &#xff0c;表示在选修课程 ai 前 必须 先选修 bi 。 例如&#xff0c;想要学习课程 0 &#xff0c;…...

“数据类型不一致”会走索引吗?

分析&回答 字符串类型的索引 id_1 varchar(20) NOT NULL这样下面两条语句的结果是一样的&#xff1a; SELECT * FROM ix_test WHERE id_11; SELECT * FROM ix_test WHERE id_11;执行计划是不同的&#xff1a; mysql> explain select * from ix_test where id_11; | 1 …...

Leetcode 1572.矩阵对角线元素之和

给你一个正方形矩阵 mat&#xff0c;请你返回矩阵对角线元素的和。 请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。 示例 1&#xff1a; 输入&#xff1a;mat [[1,2,3],[4,5,6],[7,8,9]] 输出&#xff1a;25 解释&#xff1a;对角线的和为&#xff…...

[PG]将一行数据打散成多行数据

原始数据 比如有如此表结构定义: 假如查询数据如下&#xff1a; select dt as "日期",bj_count as "北京", sh_count as "上海",gz_count as "广州", sz_count as "深圳" from city_stats order by dt--------------------…...

二蛋赠书一期:《快捷学习Spring》

文章目录 前言活动规则参与方式本期赠书《快捷学习Spring》关于本书作者介绍内容简介读者对象 结语 前言 大家好&#xff01;我是二蛋&#xff0c;一个热爱技术、乐于分享的工程师。在过去的几年里&#xff0c;我一直通过各种渠道与大家分享技术知识和经验。我深知&#xff0c…...

Threejs汽车展厅

2023-09-06-16-29-40 预览&#xff1a;https://9kt8fy-1234.csb.app/ 源码链接...

LeetCode:207. 课程表、210. 课程表 II(拓扑排序 C++)

目录 207. 课程表 题目描述&#xff1a; 实现代码与解析&#xff1a; 拓扑排序 210. 课程表 II 题目描述&#xff1a; 实现代码与解析&#xff1a; 拓扑排序 原理思路&#xff1a; 207. 课程表 题目描述&#xff1a; 你这个学期必须选修 numCourses 门课程&#xff0…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

DBLP数据库是什么?

DBLP&#xff08;Digital Bibliography & Library Project&#xff09;Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高&#xff0c;数据库文献更新速度很快&#xff0c;很好地反映了国际计算机科学学术研…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化

是不是受够了安装了oracle database之后sqlplus的简陋&#xff0c;无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话&#xff0c;配置.bahs_profile后也能解决上下翻页这些&#xff0c;但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可&#xff0c…...