当前位置: 首页 > news >正文

时序预测 | MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测

时序预测 | MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测

目录

    • 时序预测 | MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

ICEEMDAN-iMPA-BiLSTM功率/风速预测 基于改进的自适应经验模态分解+改进海洋捕食者算法+双向长短期记忆网络时间序列预测~组合预测
1.分解时避免了传统经验模态分解的一些固有缺陷,效果更佳,并通过改进的海洋捕食者算法对BiLSTM四个参数进行寻优,最后对每个分量建立BiLSTM模型进行预测后叠加集成,全新组合预测,出图多且精美~
2.改进点如下:
通过一个新的自适应参数来控制捕食者移动的步长,并使用非线性参数作为控制参数来平衡NMPA的探索和开发阶段,有效提高其搜索精度与收敛速度。
1⃣️直接替换excel数据即可用 适合新手小白
2⃣️附赠案例数据 可直接运行

程序设计

  • 完整程序和数据下载方式私信博主回复:MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测
%%  参数设置
%% 训练模型
%% 模型预测%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
function [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% ELMTRAIN Create and Train a Extreme Learning Machine
% Syntax
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,N,TF,TYPE)
% Description
% Input
% P   - Input Matrix of Training Set  (R*Q)
% T   - Output Matrix of Training Set (S*Q)
% N   - Number of Hidden Neurons (default = Q)
% TF  - Transfer Function:
%       'sig' for Sigmoidal function (default)
%       'sin' for Sine function
%       'hardlim' for Hardlim function
% TYPE - Regression (0,default) or Classification (1)
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Output
% IW  - Input Weight Matrix (N*R)
% B   - Bias Matrix  (N*1)
% LW  - Layer Weight Matrix (N*S)
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Example
% Regression:
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',0)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% Classification
% [IW,B,LW,TF,TYPE] = elmtrain(P,T,20,'sig',1)
% Y = elmtrain(P,IW,B,LW,TF,TYPE)
% See also ELMPREDICT
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 2error('ELM:Arguments','Not enough input arguments.');
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 3N = size(P,2);
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 4TF = 'sig';
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if nargin < 5TYPE = 0;
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
if size(P,2) ~= size(T,2)error('ELM:Arguments','The columns of P and T must be same.');
end
[R,Q] = size(P);
if TYPE  == 1T  = ind2vec(T);
end
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[S,Q] = size(T);
% Randomly Generate the Input Weight Matrix
IW = rand(N,R) * 2 - 1;
% Randomly Generate the Bias Matrix
B = rand(N,1);
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
BiasMatrix = repmat(B,1,Q);
% Calculate the Layer Output Matrix H
tempH = IW * P + BiasMatrix;
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
switch TFcase 'sig'H = 1 ./ (1 + exp(-tempH));case 'sin'H = sin(tempH);case 'hardlim'H = hardlim(tempH);
end
% Calculate the Output Weight Matrix
LW = pinv(H') * T';
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502

相关文章:

时序预测 | MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测

时序预测 | MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测 目录 时序预测 | MATLAB实现ICEEMDAN-iMPA-BiLSTM时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 ICEEMDAN-iMPA-BiLSTM功率/风速预测 基于改进的自适应经验模态分解改进海洋捕食者算法双向长短期记忆…...

二叉树(上)

“路虽远&#xff0c;行则将至” ❤️主页&#xff1a;小赛毛 目录 1.树概念及结构 1.1树的概念 1.2 树的相关概念 1.3 树的表示&#xff08;树的存储&#xff09; 2.二叉树概念及结构 2.1概念 2.2现实中的二叉树 2.3 特殊的二叉树&#xff1a; 2.4 二叉树的性质 3.二叉树的顺…...

Excel怎么批量生成文件夹

Excel怎么批量生成文件夹的链接: https://jingyan.baidu.com/article/ea24bc398d9dcb9b63b3312f.html...

c++ 学习之 静态成员变量和静态成员函数

文章目录 前言正文静态成员变量初始化操作如何理解共享一份数据访问权限 静态成员函数访问方式静态成员函数只能访问静态成员变量访问权限 前言 静态成员分为 1&#xff09;静态成员变量 所有对象共享一份数据在编译阶段分配空间类内声明&#xff0c;类外初始化 2&#xff09…...

C程序需要按下回车键才能读取字符

当编写涉及从终端输入字符的C程序时&#xff0c;有时会遇到需要按下回车键才能读取字符的问题。这是因为默认情况下&#xff0c;终端通常处于行缓冲模式&#xff0c;需要等待用户按下回车键才会将输入的字符发送给正在运行的程序。这可能会导致一些不便&#xff0c;尤其是当程序…...

x86体系结构(WinDbg学习笔记)

寄存器 eaxAccumulator累加器ebxBase register基寄存器ecxCounter register计数器寄存器edxData register - can be used for I/O port access and arithmetic functions数据寄存器-可用于I/O端口访问和算术函数esiSource index register源索引寄存器ediDestination index reg…...

Hadoop的第二个核心组件:MapReduce框架第四节

Hadoop的第二个核心组件&#xff1a;MapReduce框架 十、MapReduce的特殊应用场景1、使用MapReduce进行join操作2、使用MapReduce的计数器3、MapReduce做数据清洗 十一、MapReduce的工作流程&#xff1a;详细的工作流程第一步&#xff1a;提交MR作业资源第二步&#xff1a;运行M…...

算法通关村第十九关——最少硬币数

LeetCode322.给你一个整数数组 coins,表示不同面额的硬币&#xff0c;以及一个整数 amount&#xff0c;表示总金额。计算并返回可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额&#xff0c;返回-1。你可以认为每种硬币的数量是无限的。 示例1&…...

Linux ifconfig只显示 lo 网卡,没有ens网卡解决方案

项目场景&#xff1a; 虚拟机中linux无网络问题 问题描述 之前在调试linux的时候&#xff0c;由于一些不太清楚的误操作&#xff0c;导致ubuntu linux出现无网络问题&#xff0c;现象如下 ifconfig 只显示了 lo 网卡 lo 网卡&#xff1a;它是本地环回接口。 这意味着您的虚…...

Java复习-26-枚举

枚举&#xff08;替换多例设计&#xff09; 目的&#xff08;使用场景&#xff09; 不用也没啥 定义一个描述性别的类&#xff0c;那么该对象只有两个:男、 女。或者描述颜色基色的类&#xff0c;可以使用: 红色、绿色、蓝色。 功能 用于定义有限个数对象的一种结构&#x…...

NLP(六十八)使用Optimum进行模型量化

本文将会介绍如何使用HuggingFace的Optimum&#xff0c;来对微调后的BERT模型进行量化&#xff08;Quantization&#xff09;。   在文章NLP&#xff08;六十七&#xff09;BERT模型训练后动态量化&#xff08;PTDQ&#xff09;中&#xff0c;我们使用PyTorch自带的PTDQ&…...

Tomcat多实例和负载均衡动静分离

目录 一、Tomcat多实例部署 二、负载均衡动静分离 2.1.动静分离 2.11 nginx负载均衡 192.168.30.203 2.22 Tomcat服务器&#xff1a;192.168.30.200&#xff1a;80 2.23 Tomcat服务器&#xff1a;192.168.30.100&#xff1a;80 2.24 配置nginx 192.168.30.203静态页面 2…...

企业ERP和泛微OA集成场景分析

轻易云数据集成平台&#xff08;qeasy.cloud&#xff09;为企业ERP和泛微OA系统提供了强大的互通解决方案&#xff0c;特别在销售、采购和库存领域的单据审批场景中表现出色。这些场景涉及到多个业务单据的创建和审批&#xff0c;以下是一些具体的应用场景描述&#xff1a; 采购…...

31 WEB漏洞-文件操作之文件包含漏洞全解

目录 文件包含漏洞原理检测类型利用修复 本地包含-无限制&#xff0c;有限制远程包含-无限制&#xff0c;有限制各种协议流玩法文章介绍读取文件源码用法执行php代码用法写入一句话木马用法每个脚本支持的协议玩法 演示案例某CMS程序文件包含利用-黑盒CTF-南邮大&#xff0c;i春…...

qmake.exe xxx.pro -spec win32-g++ 作用

作用 qmake.exe xxx.pro -spec win32-g的作用是使用win32-g构建系统规范来生成针对xxx.pro项目的构建脚本。 具体来说&#xff0c;这个命令的含义如下&#xff1a; qmake.exe&#xff1a;使用qmake命令行工具。xxx.pro&#xff1a;指定了要构建的项目文件&#xff0c;.pro文…...

SpringMVC实现增删改查

文章目录 一、配置文件1.1 导入相关pom依赖1.2 jdbc.properties&#xff1a;配置文件1.3 generatorConfig.xml&#xff1a;代码生成器1.4 spring-mybatis.xml &#xff1a;spring与mybatis整合的配置文件1.5 spring-context.xml &#xff1a;上下文配置文件1.6 spring-mvc-xml:…...

React 配置别名 @ ( js/ts 项目中通过 webpack.config.js 配置)

一、简介 在 Vue 项目当中&#xff0c;可以使用 来表示 src/&#xff0c;但在 React 项目中&#xff0c;默认却没有该功能&#xff0c;因此需要进行手动的配置来实现该功能。 别名主要解决的问题&#xff1a;每个页面都使用路径的方式进行引入&#xff0c;这样很麻烦&#xff…...

Android 在TextView前面添加多个任意View且不影响换行

实现效果如下&#xff1a; 如上&#xff0c;将头像后面的东西看作一个整体&#xff0c;因为不能影响后面内容的换行&#xff0c;且前面控件的长度是可变的&#xff0c;所以采用自定义View的方法来实现&#xff1a; /*** CSDN深海呐 https://blog.csdn.net/qq_40945489/articl…...

字符串相加

给定两个字符串形式的非负整数 num1 和num2 &#xff0c;计算它们的和并同样以字符串形式返回。 你不能使用任何內建的用于处理大整数的库&#xff08;比如 BigInteger&#xff09;&#xff0c; 也不能直接将输入的字符串转换为整数形式。 示例 1&#xff1a; 输入&#xff…...

uni-app直播从0到1实战

1.安装开发工具 2.创建项目 参考&#xff1a;uniapp从零到一的学习商城实战_云澜哥哥的博客-CSDN博客...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...