Chinese-LLaMA-Alpaca-2模型的测评
训练生成效果评测
Fastchat Chatbot Arena推出了模型在线对战平台,可浏览和评测模型回复质量。对战平台提供了胜率、Elo评分等评测指标,并且可以查看两两模型的对战胜率等结果。生成回复具有随机性,受解码超参、随机种子等因素影响,因此相关评测并非绝对严谨,结果仅供晾晒参考。
⚔️ 模型竞技场:http://llm-arena.ymcui.com
系统 | 对战胜率(无平局) ↓ | Elo评分 |
---|---|---|
Chinese-Alpaca-2-13B-16K | 86.84% | 1580 |
Chinese-Alpaca-2-13B | 72.01% | 1579 |
Chinese-Alpaca-Pro-33B | 64.87% | 1548 |
Chinese-Alpaca-2-7B | 64.11% | 1572 |
Chinese-Alpaca-Pro-7B | 62.05% | 1500 |
Chinese-Alpaca-2-7B-16K | 61.67% | 1540 |
Chinese-Alpaca-Pro-13B | 61.26% | 1567 |
Chinese-Alpaca-Plus-33B | 31.29% | 1401 |
Chinese-Alpaca-Plus-13B | 23.43% | 1329 |
Chinese-Alpaca-Plus-7B | 20.92% | 1379 |
以上结果截至2023年9月1日。最新结果请进入⚔️竞技场进行查看。
客观效果评测:C-Eval
C-Eval是一个全面的中文基础模型评估套件,其中验证集和测试集分别包含1.3K和12.3K个选择题,涵盖52个学科。实验结果以“zero-shot / 5-shot”进行呈现。C-Eval推理代码请参考本项目:📖GitHub Wiki
LLaMA Models | Valid | Test | Alpaca Models | Valid | Test |
---|---|---|---|---|---|
Chinese-LLaMA-2-13B | 40.6 / 42.7 | 38.0 / 41.6 | Chinese-Alpaca-2-13B | 44.3 / 45.9 | 42.6 / 44.0 |
Chinese-LLaMA-2-7B | 28.2 / 36.0 | 30.3 / 34.2 | Chinese-Alpaca-2-7B | 41.3 / 42.9 | 40.3 / 39.5 |
Chinese-LLaMA-Plus-33B | 37.4 / 40.0 | 35.7 / 38.3 | Chinese-Alpaca-Plus-33B | 46.5 / 46.3 | 44.9 / 43.5 |
Chinese-LLaMA-Plus-13B | 27.3 / 34.0 | 27.8 / 33.3 | Chinese-Alpaca-Plus-13B | 43.3 / 42.4 | 41.5 / 39.9 |
Chinese-LLaMA-Plus-7B | 27.3 / 28.3 | 26.9 / 28.4 | Chinese-Alpaca-Plus-7B | 36.7 / 32.9 | 36.4 / 32.3 |
客观效果评测:CMMLU
CMMLU是另一个综合性中文评测数据集,专门用于评估语言模型在中文语境下的知识和推理能力,涵盖了从基础学科到高级专业水平的67个主题,共计11.5K个选择题。CMMLU推理代码请参考本项目:📖GitHub Wiki
LLaMA Models | Test (0/few-shot) | Alpaca Models | Test (0/few-shot) |
---|---|---|---|
Chinese-LLaMA-2-13B | 38.9 / 42.5 | Chinese-Alpaca-2-13B | 43.2 / 45.5 |
Chinese-LLaMA-2-7B | 27.9 / 34.1 | Chinese-Alpaca-2-7B | 40.0 / 41.8 |
Chinese-LLaMA-Plus-33B | 35.2 / 38.8 | Chinese-Alpaca-Plus-33B | 46.6 / 45.3 |
Chinese-LLaMA-Plus-13B | 29.6 / 34.0 | Chinese-Alpaca-Plus-13B | 40.6 / 39.9 |
Chinese-LLaMA-Plus-7B | 25.4 / 26.3 | Chinese-Alpaca-Plus-7B | 36.8 / 32.6 |
长上下文版模型(16K)评测
LongBench是一个大模型长文本理解能力的评测基准,由6大类、20个不同的任务组成,多数任务的平均长度在5K-15K之间,共包含约4.75K条测试数据。LongBench推理代码请参考本项目:📖GitHub Wiki
Models | 单文档QA | 多文档QA | 摘要 | Few-shot学习 | 代码补全 | 合成任务 | Avg |
---|---|---|---|---|---|---|---|
Chinese-Alpaca-2-13B-16K | 48.1 | 26.0 | 12.8 | 23.3 | 45.5 | 21.5 | 29.5 |
Chinese-Alpaca-2-13B | 38.4 | 20.0 | 12.2 | 18.0 | 46.2 | 9.0 | 24.0 |
Chinese-Alpaca-2-7B-16K | 46.6 | 23.6 | 14.5 | 29.0 | 47.1 | 9.0 | 28.3 |
Chinese-Alpaca-2-7B | 32.0 | 17.2 | 11.5 | 21.5 | 48.8 | 5.0 | 22.7 |
Chinese-LLaMA-2-13B-16K | 37.3 | 18.1 | 3.4 | 30.8 | 13.0 | 3.0 | 17.6 |
Chinese-LLaMA-2-13B | 26.7 | 14.0 | 4.4 | 16.3 | 9.8 | 5.5 | 12.8 |
Chinese-LLaMA-2-7B-16K | 33.7 | 16.5 | 5.3 | 24.3 | 9.9 | 4.2 | 15.6 |
Chinese-LLaMA-2-7B | 20.7 | 14.5 | 6.5 | 12.8 | 11.5 | 5.3 | 11.9 |
量化效果评测
以Chinese-LLaMA-2-7B为例,对比不同精度下的模型大小、PPL(困惑度)、C-Eval效果,方便用户了解量化精度损失。PPL以4K上下文大小计算,C-Eval汇报的是valid集合上zero-shot和5-shot结果。
精度 | 模型大小 | PPL | C-Eval |
---|---|---|---|
FP16 | 12.9 GB | 9.373 | 28.2 / 36.0 |
8-bit量化 | 6.8 GB | 9.476 | 26.8 / 35.4 |
4-bit量化 | 3.7 GB | 10.132 | 25.5 / 32.8 |
特别地,以下是在llama.cpp下不同量化方法的评测数据,供用户参考,速度以ms/tok计,测试设备为M1 Max。具体细节见📖GitHub Wiki
llama.cpp | F16 | Q2_K | Q3_K | Q4_0 | Q4_1 | Q4_K | Q5_0 | Q5_1 | Q5_K | Q6_K | Q8_0 |
---|---|---|---|---|---|---|---|---|---|---|---|
PPL | 9.128 | 11.107 | 9.576 | 9.476 | 9.576 | 9.240 | 9.156 | 9.213 | 9.168 | 9.133 | 9.129 |
Size | 12.91G | 2.41G | 3.18G | 3.69G | 4.08G | 3.92G | 4.47G | 4.86G | 4.59G | 5.30G | 6.81G |
CPU Speed | 117 | 42 | 51 | 39 | 44 | 43 | 48 | 51 | 50 | 54 | 65 |
GPU Speed | 53 | 19 | 21 | 17 | 18 | 20 | x | x | 25 | 26 | x |
相关文章:
Chinese-LLaMA-Alpaca-2模型的测评
训练生成效果评测 Fastchat Chatbot Arena推出了模型在线对战平台,可浏览和评测模型回复质量。对战平台提供了胜率、Elo评分等评测指标,并且可以查看两两模型的对战胜率等结果。生成回复具有随机性,受解码超参、随机种子等因素影响ÿ…...

SLAM论文详解(5) — Bundle_Adjustment_LM(BALM)论文详解
目录 1 摘要 2 相关工作 3 BA公式和导数 A. 直接BA公式 B. 导数 C. 二阶近似 4 自适应体素化 5. 将BALM结合进LOAM 6. 实验 7. 算法应用场景解析 1 摘要 Bundle Adjustment是一种用于同时估计三维结构和传感器运动运动的优化算法。在视觉SLAM,三维重建等…...
C语言对单链表所有操作与一些相关面试题
目录 单链表的特性 单链表的所有操作 定义一个单链表 创建一个链表头 插入数据(头插法) 插入数据(尾插法) 查找节点 修改数据节点 删除节点 打印数据 销毁链表 翻转链表 打印链表长度 冒泡排序 快排 堆排 查找倒数第K个节点(双指针法) …...
高防服务器如何抵御大规模攻击
高防服务器如何抵御大规模攻击?高防服务器是一种专门设计用于抵御大规模攻击的服务器,具备出色的安全性和可靠性。在当今互联网时代,网络安全问题日益严重,DDOS攻击(分布式拒绝服务攻击)等高强度攻击已成为…...

Go 接口和多态
在讲解具体的接口之前,先看如下问题。 使用面向对象的方式,设计一个加减的计算器 代码如下: package mainimport "fmt"//父类,这是结构体 type Operate struct {num1 intnum2 int }//加法子类,这是结构体…...

Git忽略文件的几种方法,以及.gitignore文件的忽略规则
目录 .gitignore文件Git忽略规则以及优先级.gitignore文件忽略规则常用匹配示例: 有三种方法可以实现忽略Git中不想提交的文件。1、在Git项目中定义 .gitignore 文件(优先级最高,推荐!)2、在Git项目的设置中指定排除文…...

C语言——指针进阶(2)
继续上次的指针,想起来还有指针的内容还没有更新完,今天来补上之前的内容,上次我们讲了函数指针,并且使用它来实现一些功能,今天我们就讲一讲函数指针数组等内容,废话不多说,我们开始今天的学习…...
【汇编中的寄存器分类与不同寄存器的用途】
汇编中的寄存器分类与不同寄存器的用途 寄存器分类 在计算机体系结构中,8086CPU,寄存器可以分为以下几类: 1. 通用寄存器: 通用寄存器是用于存储数据和执行算术运算的寄存器。在 x86 架构中,这些通用寄存器通常包括…...

基于文本提示的图像目标检测与分割实践
近年来,计算机视觉取得了显着的进步,特别是在图像分割和目标检测任务方面。 最近值得注意的突破之一是分段任意模型(SAM),这是一种多功能深度学习模型,旨在有效地从图像和输入提示中预测对象掩模。 通过利用…...

【4-5章】Spark编程基础(Python版)
课程资源:(林子雨)Spark编程基础(Python版)_哔哩哔哩_bilibili 第4章 RDD编程(21节) Spark生态系统: Spark Core:底层核心(RDD编程是针对这个)Spark SQL:…...

04 卷积神经网络搭建
一、数据集 MNIST数据集是从NIST的两个手写数字数据集:Special Database 3 和Special Database 1中分别取出部分图像,并经过一些图像处理后得到的[参考]。 MNIST数据集共有70000张图像,其中训练集60000张,测试集10000张。所有图…...
【hadoop运维】running beyond physical memory limits:正确配置yarn中的mapreduce内存
文章目录 一. 问题描述二. 问题分析与解决1. container内存监控1.1. 虚拟内存判断1.2. 物理内存判断 2. 正确配置mapReduce内存2.1. 配置map和reduce进程的物理内存:2.2. Map 和Reduce 进程的JVM 堆大小 3. 小结 一. 问题描述 在hadoop3.0.3集群上执行hive3.1.2的任…...
数据结构--6.5二叉排序树(插入,查找和删除)
目录 一、创建 二、插入 三、删除 二叉排序树(Binary Sort Tree)又称为二叉查找树,它或者是一棵空树,或者是具有下列性质的二叉树: ——若它的左子树不为空,则左子树上所有结点的值均小于它的根结构的值…...

无需公网IP,在家SSH远程连接公司内网服务器「cpolar内网穿透」
文章目录 1. Linux CentOS安装cpolar2. 创建TCP隧道3. 随机地址公网远程连接4. 固定TCP地址5. 使用固定公网TCP地址SSH远程 本次教程我们来实现如何在外公网环境下,SSH远程连接家里/公司的Linux CentOS服务器,无需公网IP,也不需要设置路由器。…...
Java工具类
一、org.apache.commons.io.IOUtils closeQuietly() toString() copy() toByteArray() write() toInputStream() readLines() copyLarge() lineIterator() readFully() 二、org.apache.commons.io.FileUtils deleteDirectory() readFileToString() de…...

makefile之使用函数wildcard和patsubst
Makefile之调用函数 调用makefile机制实现的一些函数 $(function arguments) : function是函数名,arguments是该函数的参数 参数和函数名用空格或Tab分隔,如果有多个参数,之间用逗号隔开. wildcard函数:让通配符在makefile文件中使用有效果 $(wildcard pattern) 输入只有一个参…...
算法通关村第十八关——排列问题
LeetCode46.给定一个没有重复数字的序列,返回其所有可能的全排列。例如: 输入:[1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] 元素1在[1,2]中已经使…...

基于STM32设计的生理监测装置
一、项目功能要求 设计并制作一个生理监测装置,能够实时监测人体的心电图、呼吸和温度,并在LCD液晶显示屏上显示相关数据。 随着现代生活节奏的加快和环境的变化,人们对身体健康的关注程度越来越高。为了及时掌握自身的生理状况,…...
Go-Python-Java-C-LeetCode高分解法-第五周合集
前言 本题解Go语言部分基于 LeetCode-Go 其他部分基于本人实践学习 个人题解GitHub连接:LeetCode-Go-Python-Java-C Go-Python-Java-C-LeetCode高分解法-第一周合集 Go-Python-Java-C-LeetCode高分解法-第二周合集 Go-Python-Java-C-LeetCode高分解法-第三周合集 G…...
【前端知识】前端加密算法(base64、md5、sha1、escape/unescape、AES/DES)
前端加密算法 一、base64加解密算法 简介:Base64算法使用64个字符(A-Z、a-z、0-9、、/)来表示二进制数据的64种可能性,将每3个字节的数据编码为4个可打印字符。如果字节数不是3的倍数,将会进行填充。 优点࿱…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...

R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...