当前位置: 首页 > news >正文

Chinese-LLaMA-Alpaca-2模型的测评

训练生成效果评测

Fastchat Chatbot Arena推出了模型在线对战平台,可浏览和评测模型回复质量。对战平台提供了胜率、Elo评分等评测指标,并且可以查看两两模型的对战胜率等结果。生成回复具有随机性,受解码超参、随机种子等因素影响,因此相关评测并非绝对严谨,结果仅供晾晒参考。

⚔️ 模型竞技场:http://llm-arena.ymcui.com

系统对战胜率(无平局) ↓Elo评分
Chinese-Alpaca-2-13B-16K86.84%1580
Chinese-Alpaca-2-13B72.01%1579
Chinese-Alpaca-Pro-33B64.87%1548
Chinese-Alpaca-2-7B64.11%1572
Chinese-Alpaca-Pro-7B62.05%1500
Chinese-Alpaca-2-7B-16K61.67%1540
Chinese-Alpaca-Pro-13B61.26%1567
Chinese-Alpaca-Plus-33B31.29%1401
Chinese-Alpaca-Plus-13B23.43%1329
Chinese-Alpaca-Plus-7B20.92%1379

以上结果截至2023年9月1日。最新结果请进入⚔️竞技场进行查看。

客观效果评测:C-Eval

C-Eval是一个全面的中文基础模型评估套件,其中验证集和测试集分别包含1.3K和12.3K个选择题,涵盖52个学科。实验结果以“zero-shot / 5-shot”进行呈现。C-Eval推理代码请参考本项目:📖GitHub Wiki

LLaMA ModelsValidTestAlpaca ModelsValidTest
Chinese-LLaMA-2-13B40.6 / 42.738.0 / 41.6Chinese-Alpaca-2-13B44.3 / 45.942.6 / 44.0
Chinese-LLaMA-2-7B28.2 / 36.030.3 / 34.2Chinese-Alpaca-2-7B41.3 / 42.940.3 / 39.5
Chinese-LLaMA-Plus-33B37.4 / 40.035.7 / 38.3Chinese-Alpaca-Plus-33B46.5 / 46.344.9 / 43.5
Chinese-LLaMA-Plus-13B27.3 / 34.027.8 / 33.3Chinese-Alpaca-Plus-13B43.3 / 42.441.5 / 39.9
Chinese-LLaMA-Plus-7B27.3 / 28.326.9 / 28.4Chinese-Alpaca-Plus-7B36.7 / 32.936.4 / 32.3

客观效果评测:CMMLU

CMMLU是另一个综合性中文评测数据集,专门用于评估语言模型在中文语境下的知识和推理能力,涵盖了从基础学科到高级专业水平的67个主题,共计11.5K个选择题。CMMLU推理代码请参考本项目:📖GitHub Wiki

LLaMA ModelsTest (0/few-shot)Alpaca ModelsTest (0/few-shot)
Chinese-LLaMA-2-13B38.9 / 42.5Chinese-Alpaca-2-13B43.2 / 45.5
Chinese-LLaMA-2-7B27.9 / 34.1Chinese-Alpaca-2-7B40.0 / 41.8
Chinese-LLaMA-Plus-33B35.2 / 38.8Chinese-Alpaca-Plus-33B46.6 / 45.3
Chinese-LLaMA-Plus-13B29.6 / 34.0Chinese-Alpaca-Plus-13B40.6 / 39.9
Chinese-LLaMA-Plus-7B25.4 / 26.3Chinese-Alpaca-Plus-7B36.8 / 32.6

长上下文版模型(16K)评测

LongBench是一个大模型长文本理解能力的评测基准,由6大类、20个不同的任务组成,多数任务的平均长度在5K-15K之间,共包含约4.75K条测试数据。LongBench推理代码请参考本项目:📖GitHub Wiki

Models单文档QA多文档QA摘要Few-shot学习代码补全合成任务Avg
Chinese-Alpaca-2-13B-16K48.126.012.823.345.521.529.5
Chinese-Alpaca-2-13B38.420.012.218.046.29.024.0
Chinese-Alpaca-2-7B-16K46.623.614.529.047.19.028.3
Chinese-Alpaca-2-7B32.017.211.521.548.85.022.7
Chinese-LLaMA-2-13B-16K37.318.13.430.813.03.017.6
Chinese-LLaMA-2-13B26.714.04.416.39.85.512.8
Chinese-LLaMA-2-7B-16K33.716.55.324.39.94.215.6
Chinese-LLaMA-2-7B20.714.56.512.811.55.311.9

量化效果评测

以Chinese-LLaMA-2-7B为例,对比不同精度下的模型大小、PPL(困惑度)、C-Eval效果,方便用户了解量化精度损失。PPL以4K上下文大小计算,C-Eval汇报的是valid集合上zero-shot和5-shot结果。

精度模型大小PPLC-Eval
FP1612.9 GB9.37328.2 / 36.0
8-bit量化6.8 GB9.47626.8 / 35.4
4-bit量化3.7 GB10.13225.5 / 32.8

特别地,以下是在llama.cpp下不同量化方法的评测数据,供用户参考,速度以ms/tok计,测试设备为M1 Max。具体细节见📖GitHub Wiki

llama.cppF16Q2_KQ3_KQ4_0Q4_1Q4_KQ5_0Q5_1Q5_KQ6_KQ8_0
PPL9.12811.1079.5769.4769.5769.2409.1569.2139.1689.1339.129
Size12.91G2.41G3.18G3.69G4.08G3.92G4.47G4.86G4.59G5.30G6.81G
CPU Speed11742513944434851505465
GPU Speed531921171820xx2526x

相关文章:

Chinese-LLaMA-Alpaca-2模型的测评

训练生成效果评测 Fastchat Chatbot Arena推出了模型在线对战平台,可浏览和评测模型回复质量。对战平台提供了胜率、Elo评分等评测指标,并且可以查看两两模型的对战胜率等结果。生成回复具有随机性,受解码超参、随机种子等因素影响&#xff…...

SLAM论文详解(5) — Bundle_Adjustment_LM(BALM)论文详解

目录 1 摘要 2 相关工作 3 BA公式和导数 A. 直接BA公式 B. 导数 C. 二阶近似 4 自适应体素化 5. 将BALM结合进LOAM 6. 实验 7. 算法应用场景解析 1 摘要 Bundle Adjustment是一种用于同时估计三维结构和传感器运动运动的优化算法。在视觉SLAM,三维重建等…...

C语言对单链表所有操作与一些相关面试题

目录 单链表的特性 单链表的所有操作 定义一个单链表 创建一个链表头 插入数据(头插法) 插入数据(尾插法) 查找节点 修改数据节点 删除节点 打印数据 销毁链表 翻转链表 打印链表长度 冒泡排序 快排 堆排 查找倒数第K个节点(双指针法) …...

高防服务器如何抵御大规模攻击

高防服务器如何抵御大规模攻击?高防服务器是一种专门设计用于抵御大规模攻击的服务器,具备出色的安全性和可靠性。在当今互联网时代,网络安全问题日益严重,DDOS攻击(分布式拒绝服务攻击)等高强度攻击已成为…...

Go 接口和多态

在讲解具体的接口之前,先看如下问题。 使用面向对象的方式,设计一个加减的计算器 代码如下: package mainimport "fmt"//父类,这是结构体 type Operate struct {num1 intnum2 int }//加法子类,这是结构体…...

Git忽略文件的几种方法,以及.gitignore文件的忽略规则

目录 .gitignore文件Git忽略规则以及优先级.gitignore文件忽略规则常用匹配示例: 有三种方法可以实现忽略Git中不想提交的文件。1、在Git项目中定义 .gitignore 文件(优先级最高,推荐!)2、在Git项目的设置中指定排除文…...

C语言——指针进阶(2)

继续上次的指针,想起来还有指针的内容还没有更新完,今天来补上之前的内容,上次我们讲了函数指针,并且使用它来实现一些功能,今天我们就讲一讲函数指针数组等内容,废话不多说,我们开始今天的学习…...

【汇编中的寄存器分类与不同寄存器的用途】

汇编中的寄存器分类与不同寄存器的用途 寄存器分类 在计算机体系结构中,8086CPU,寄存器可以分为以下几类: 1. 通用寄存器: 通用寄存器是用于存储数据和执行算术运算的寄存器。在 x86 架构中,这些通用寄存器通常包括…...

基于文本提示的图像目标检测与分割实践

近年来,计算机视觉取得了显着的进步,特别是在图像分割和目标检测任务方面。 最近值得注意的突破之一是分段任意模型(SAM),这是一种多功能深度学习模型,旨在有效地从图像和输入提示中预测对象掩模。 通过利用…...

【4-5章】Spark编程基础(Python版)

课程资源:(林子雨)Spark编程基础(Python版)_哔哩哔哩_bilibili 第4章 RDD编程(21节) Spark生态系统: Spark Core:底层核心(RDD编程是针对这个)Spark SQL:…...

04 卷积神经网络搭建

一、数据集 MNIST数据集是从NIST的两个手写数字数据集:Special Database 3 和Special Database 1中分别取出部分图像,并经过一些图像处理后得到的[参考]。 MNIST数据集共有70000张图像,其中训练集60000张,测试集10000张。所有图…...

【hadoop运维】running beyond physical memory limits:正确配置yarn中的mapreduce内存

文章目录 一. 问题描述二. 问题分析与解决1. container内存监控1.1. 虚拟内存判断1.2. 物理内存判断 2. 正确配置mapReduce内存2.1. 配置map和reduce进程的物理内存:2.2. Map 和Reduce 进程的JVM 堆大小 3. 小结 一. 问题描述 在hadoop3.0.3集群上执行hive3.1.2的任…...

数据结构--6.5二叉排序树(插入,查找和删除)

目录 一、创建 二、插入 三、删除 二叉排序树(Binary Sort Tree)又称为二叉查找树,它或者是一棵空树,或者是具有下列性质的二叉树: ——若它的左子树不为空,则左子树上所有结点的值均小于它的根结构的值…...

无需公网IP,在家SSH远程连接公司内网服务器「cpolar内网穿透」

文章目录 1. Linux CentOS安装cpolar2. 创建TCP隧道3. 随机地址公网远程连接4. 固定TCP地址5. 使用固定公网TCP地址SSH远程 本次教程我们来实现如何在外公网环境下,SSH远程连接家里/公司的Linux CentOS服务器,无需公网IP,也不需要设置路由器。…...

Java工具类

一、org.apache.commons.io.IOUtils closeQuietly() toString() copy() toByteArray() write() toInputStream() readLines() copyLarge() lineIterator() readFully() 二、org.apache.commons.io.FileUtils deleteDirectory() readFileToString() de…...

makefile之使用函数wildcard和patsubst

Makefile之调用函数 调用makefile机制实现的一些函数 $(function arguments) : function是函数名,arguments是该函数的参数 参数和函数名用空格或Tab分隔,如果有多个参数,之间用逗号隔开. wildcard函数:让通配符在makefile文件中使用有效果 $(wildcard pattern) 输入只有一个参…...

算法通关村第十八关——排列问题

LeetCode46.给定一个没有重复数字的序列,返回其所有可能的全排列。例如: 输入:[1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] 元素1在[1,2]中已经使…...

基于STM32设计的生理监测装置

一、项目功能要求 设计并制作一个生理监测装置,能够实时监测人体的心电图、呼吸和温度,并在LCD液晶显示屏上显示相关数据。 随着现代生活节奏的加快和环境的变化,人们对身体健康的关注程度越来越高。为了及时掌握自身的生理状况&#xff0c…...

Go-Python-Java-C-LeetCode高分解法-第五周合集

前言 本题解Go语言部分基于 LeetCode-Go 其他部分基于本人实践学习 个人题解GitHub连接:LeetCode-Go-Python-Java-C Go-Python-Java-C-LeetCode高分解法-第一周合集 Go-Python-Java-C-LeetCode高分解法-第二周合集 Go-Python-Java-C-LeetCode高分解法-第三周合集 G…...

【前端知识】前端加密算法(base64、md5、sha1、escape/unescape、AES/DES)

前端加密算法 一、base64加解密算法 简介:Base64算法使用64个字符(A-Z、a-z、0-9、、/)来表示二进制数据的64种可能性,将每3个字节的数据编码为4个可打印字符。如果字节数不是3的倍数,将会进行填充。 优点&#xff1…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

LLMs 系列实操科普(1)

写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...

flow_controllers

关键点: 流控制器类型: 同步(Sync):发布操作会阻塞,直到数据被确认发送。异步(Async):发布操作非阻塞,数据发送由后台线程处理。纯同步(PureSync…...