当前位置: 首页 > news >正文

LA@二次型@标准化相关原理和方法

文章目录

    • 标准化方法
      • 正交变换法🎈
        • 求矩阵的特征值
        • 求各特征值对应的线性无关特征向量组
        • 正交化各个向量组
      • 配方法
        • 步骤
      • 初等变换法
        • 原理
        • 总结初等变换法的步骤

标准化方法

正交变换法🎈

  • 二次型可标准化定理的证明过程给出使用二次型标准化的步骤

  • 该方法通过计算出一个特定的正交矩阵 P \bold P P,并用 P \bold P P来进行线性变换实现得到标准形

求矩阵的特征值

  • 求出 n n n元二次型矩阵 A \bold A A的全部特征值 λ i \lambda_i λi,它们分别是 n i n_i ni重根(而且对应 n i n_i ni个线性无关的特征向量)

    • ∑ i s n i = n \sum_{i}^{s}n_i=n isni=n, i = 1 , 2 , ⋯ , s i=1,2,\cdots,s i=1,2,,s(表示A有s个互异的特征根)

求各特征值对应的线性无关特征向量组

  • 对每个 λ i \lambda_i λi求出对应的齐次线性方程组 ( λ i E − A ) x = 0 \bold{(\lambda_i{E}-A)x=0} (λiEA)x=0的基础解系 Φ i \Phi_i Φi(包含 n i n_i ni个线性无关向量)

    • Φ i : α 1 ( i ) , ⋯ , α n i ( i ) \Phi_{i}:\alpha_1^{(i)},\cdots,\alpha_{n_i}^{(i)} Φi:α1(i),,αni(i), i i i表示向量(组)属于特征值 λ i \lambda_i λi,包含 n i n_i ni个线性无关的向量

正交化各个向量组

  • 分别对 Φ 1 , ⋯ , Φ s \Phi_1,\cdots,\Phi_{s} Φ1,,Φs正交化得到向量组 Ψ = ϕ 1 , ⋯ , ϕ s \Psi=\phi_1,\cdots,\phi_{s} Ψ=ϕ1,,ϕs( ϕ i 是 Φ i \phi_i是\Phi_i ϕiΦi正交化后的向量组)

  • 令矩阵 P = ( Ψ ) \bold P=(\Psi) P=(Ψ),则 P \bold P P能使 P T A P = Λ \bold{P^{T}AP=\Lambda} PTAP=Λ= diag ( λ i , ⋯ , λ n ) \text{diag}(\lambda_i,\cdots,\lambda_n) diag(λi,,λn)

  • 正交线性变换 x = P y \bold{x=Py} x=Py就是所求的线性变换

    • y = ( y 1 , ⋯ , y n ) T \bold y=(y_1,\cdots,y_n)^{T} y=(y1,,yn)T

    • f ( x 1 , ⋯ , x n ) → x = Q y g ( y 1 , ⋯ , y n ) = ∑ i = 1 n λ i y i 2 f(x_1,\cdots,x_n)\xrightarrow{x=Qy}g(y_1,\cdots,y_n)=\sum\limits_{i=1}^{n}\lambda_iy_i^2 f(x1,,xn)x=Qy g(y1,,yn)=i=1nλiyi2

配方法

  • 用正交变换化二次型成标准形,具有保持几何形状不变的优点
  • 如果不局限于用正交变换,还可以有多种方法确定一个一般的可逆矩阵来标准化二次型
  • 例如拉格朗日配方法,其原理和依据参见二次型可标准化定理的配方角度证明过程

步骤

  • f ( x 1 , ⋯ , x 2 ) = ∑ i = 2 n ∑ j = 2 n a i j x i x j f(x_1,\cdots,x_2)=\sum_{i=2}^{n}\sum_{j=2}^{n}a_{ij}x_ix_j f(x1,,x2)=i=2nj=2naijxixj, a j i = a i j a_{ji}=a_{ij} aji=aij包含 x i x_i xi的平方项(设为 a i i x i 2 a_{ii}x_i^2 aiixi2),那么将 x i x_i xi相关的项集中求和,记为 u i = ∑ j ≠ i n 2 a i j x i x j u_i=\sum_{j\neq{i}}^{n}2a_{ij}x_{i}x_{j} ui=j=in2aijxixj;对 η i = a i i x i 2 + u i \eta_i=a_{ii}x_i^2+u_i ηi=aiixi2+ui进行配方,得到形如 η i = b i ( x i + ⋯ ) 2 + ⋯ \eta_{i}=b_{i}(x_{i}+\cdots)^{2}+\cdots ηi=bi(xi+)2+,从而 f = η i + v i f=\eta_i+v_i f=ηi+vi= b i ( x i i + ⋯ ) 2 + ⋯ + v i b_{i}(x_{ii}+\cdots)^{2}+\cdots+v_i bi(xii+)2++vi(1),
    • 其中 v i = f − η i = ∑ r , j ≠ i a r j x r x j v_i=f-\eta_i=\sum_{r,j\neq{i}}a_{rj}x_rx_j vi=fηi=r,j=iarjxrxj
    • 易知,(1)式中只有第一项 b i ( x i + ⋯ ) 2 b_{i}(x_{i}+\cdots)^{2} bi(xi+)2包含 x i i x_{ii} xii,其余项不包含 x i i x_{ii} xii
    • 不断地对(1)中的下一个平方项进行配方(理论分析中已经指出,(1)包含了所有 x i x_i xi的平方项 i = 1 , ⋯ , n i=1,\cdots,n i=1,,n,最终所有 x i , i = 1 , ⋯ , n x_i,i=1,\cdots,n xi,i=1,,n都会被配方成形如 b i ( x i i + ⋯ ) 2 b_{i}(x_{ii}+\cdots)^2 bi(xii+)2的形式
    • 构造线性变换: y i = x i + ⋯ y_i=x_{i}+\cdots yi=xi+,(2) ( i = 1 , ⋯ , n ) (i=1,\cdots,n) (i=1,,n);求解该线性方程组,得到线性变换 x i = y i − ⋯ x_i=y_i-\cdots xi=yi(3)
    • 那么线性变换(3)就能够使 f f f标准化
  • f f f中不包含任意平方项,但是包含某个 a i j ≠ 0 a_{ij}\neq{0} aij=0, i ≠ j i\neq{j} i=j则运用线性变换
    • x i = y i − y j x_i=y_{i}-y_{j} xi=yiyj
    • x j = y i + y j x_j=y_i+y_j xj=yi+yj
    • x k = y k x_k=y_k xk=yk, k = 1 , ⋯ , n k=1,\cdots,n k=1,,n k ≠ i , j k\neq{i,j} k=i,j
    • 代入该线性变换到 f f f可以将此类情况转换为第一种情况(包含平方项)求解

  • f ( x 1 , x 2 , x 3 ) = 4 ( x 1 2 + x 2 2 + x 3 + x 1 x 2 + x 1 x 3 + x 2 x 3 ) f(x_1,x_2,x_3)=4(x_1^2+x_2^2+x^3+x_1x_2+x_1x_3+x_2x_3) f(x1,x2,x3)=4(x12+x22+x3+x1x2+x1x3+x2x3)

  • 配方得到(0)
    f ( x 1 , x 2 , x 3 ) = 4 ( x 1 2 + x 1 ( x 2 + x 3 ) + x 2 2 + x 3 2 + x 2 x 3 ) = 4 [ ( x 1 + 1 2 x 1 ( x 2 + x 3 ) ) 2 − 1 4 ( x 2 + x 3 ) 2 + x 2 2 + x 3 2 + x 2 x 3 ] = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 − ( x 2 2 + 2 x 2 x 3 + x 3 2 ) + 4 ( x 2 2 + x 3 2 + x 2 x 3 ) = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 x 2 2 + 3 x 3 2 + 2 x 2 x 3 = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 ( x 2 2 + 2 3 x 2 x 3 ) + 3 x 3 2 = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 [ ( x 2 + 1 3 x 3 ) 2 − 1 9 x 3 2 ] + 3 x 3 2 = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 ( x 2 + 1 3 x 3 ) 2 − 1 3 x 3 2 + 3 x 3 2 = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 ( x 2 + 1 3 x 3 ) 2 + 8 3 x 3 2 \begin{aligned} f(x_1,x_2,x_3) &=4(x_1^2+x_1(x_2+x_3)+x_2^2+x_3^2+x_2x_3) \\&=4[(x_1+\frac{1}{2}x_1(x_2+x_3))^2-\frac{1}{4}(x_2+x_3)^2+x_2^2+x_3^2+x_2x_3] \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2-(x_2^2+2x_2x_3+x_3^2)+4(x_2^2+x_3^2+x_2x_3) \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3x_2^2+3x_3^2+2x_2x_3 \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3(x_2^2+\frac{2}{3}x_2x_3)+3x_3^2 \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3[(x_2+\frac{1}{3}x_3)^2-\frac{1}{9}x_3^2]+3x_3^2 \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3(x_2+\frac{1}{3}x_3)^2-\frac{1}{3}x_3^2+3x_3^2 \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3(x_2+\frac{1}{3}x_3)^2+\frac{8}{3}x_3^2 \end{aligned} f(x1,x2,x3)=4(x12+x1(x2+x3)+x22+x32+x2x3)=4[(x1+21x1(x2+x3))241(x2+x3)2+x22+x32+x2x3]=4(x1+21(x2+x3))2(x22+2x2x3+x32)+4(x22+x32+x2x3)=4(x1+21(x2+x3))2+3x22+3x32+2x2x3=4(x1+21(x2+x3))2+3(x22+32x2x3)+3x32=4(x1+21(x2+x3))2+3[(x2+31x3)291x32]+3x32=4(x1+21(x2+x3))2+3(x2+31x3)231x32+3x32=4(x1+21(x2+x3))2+3(x2+31x3)2+38x32

  • { y 1 = x 1 + 1 2 ( x 2 + x 3 ) y 2 = x 2 + 1 3 x 3 y 3 = x 3 \begin{cases}y_1=&x_1+\frac{1}{2}(x_2+x_3)\\y_2=&x_2+\frac{1}{3}x_3\\y_3=&x_3\end{cases} y1=y2=y3=x1+21(x2+x3)x2+31x3x3(1);则 f ( x 1 , x 2 , x 3 ) = g ( y 1 , y 2 , y 3 ) = 4 y 1 2 + 3 y 2 2 + 8 3 y 3 2 f(x_1,x_2,x_3)=g(y_1,y_2,y_3)=4y_1^2+3y_2^2+\frac{8}{3}y_3^2 f(x1,x2,x3)=g(y1,y2,y3)=4y12+3y22+38y32,这是一个标准形二次型

  • 通过解线性方程组(1),得 y → x \bold{y\to{x}} yx所用的线性变换 x = Q y \bold{x=Qy} x=Qy

    • x 1 = y 1 − 1 2 y 2 − 1 3 y 3 x_1=y_1-\frac{1}{2}y_2-\frac{1}{3}y_3 x1=y121y231y3

    • x 2 = y 2 − 1 3 y 3 x_2=y_2-\frac{1}{3}y_3 x2=y231y3

    • x 3 = y 3 x_3=y_3 x3=y3

    • 变换矩阵: Q = ( 1 − 1 2 − 1 3 0 1 − 1 3 0 0 1 ) \bold Q=\begin{pmatrix}1&-\frac{1}{2}&-\frac{1}{3}\\0&1&-\frac{1}{3}\\0&0&1\end{pmatrix} Q= 100211031311

    • 求变换矩阵也可利用可逆线性变换的逆变换公式:若 y = C x \bold{y=Cx} y=Cx x = C − 1 y \bold{x=C^{-1}y} x=C1y,也是计算 C = ( 1 1 2 1 2 0 1 1 3 0 0 1 ) \bold C=\begin{pmatrix}1&\frac{1}{2}&\frac{1}{2}\\0&1&\frac{1}{3}\\0&0&1\end{pmatrix} C= 100211021311 的逆矩阵 C \bold{C} C,则 Q = C − 1 \bold{Q=C^{-1}} Q=C1

    • 将此线性变换代入 f f f或者 g g g中就可得到 f f f的标准形: f = 4 y 1 2 + 3 y 2 2 + 8 3 y 3 2 f=4y_1^2+3y_2^2+\frac{8}{3}y_3^2 f=4y12+3y22+38y32,这个表达式可以从已经配好方的式(2)中直接读出(将平方项依次用 y 1 , ⋯ , y n y_1,\cdots,y_n y1,,yn代替)

  • f ( x 1 , x 2 , x 3 ) = x 1 x 2 + x 1 x 3 + 2 x 2 x 3 f(x_1,x_2,x_3)=x_1x_2+x_1x_3+2x_2x_3 f(x1,x2,x3)=x1x2+x1x3+2x2x3标准化

    • 对于 x 1 x 2 x_1x_2 x1x2

      • T : { x 1 = y 1 − y 2 x 2 = y 1 + y 2 x 3 = y 3 T = ( 1 1 0 1 − 1 0 0 0 1 ) T:\begin{cases} x_1=y_1-y_2\\ x_2=y_1+y_2\\ x_3=y_3 \end{cases} \\ T=\begin{pmatrix} 1&1&0\\ 1&-1&0\\ 0&0&1 \end{pmatrix} T: x1=y1y2x2=y1+y2x3=y3T= 110110001

      • 把线性变换 x = T y \bold{x=Ty} x=Ty带入 f f f;

        • f = ( y 1 − y 2 ) ( y 1 + y 2 ) + ( y 1 − y 2 ) y 3 + 2 ( y 1 + y 2 ) ( y 3 ) = y 1 2 − y 2 2 + y 1 y 3 − y 2 y 3 + 2 y 1 y 3 + 2 y 2 y 3 = y 1 2 − y 2 2 + 3 y 1 y 3 + y 2 y 3 f=(y_1-y_2)(y_1+y_2)+(y_1-y_2)y_3+2(y_1+y_2)(y_3) \\=y_1^2-y_2^2+y_1y_3-y_2y_3+2y_1y_3+2y_2y_3 \\=y_1^2-y_2^2+3y_1y_3+y_2y_3 f=(y1y2)(y1+y2)+(y1y2)y3+2(y1+y2)(y3)=y12y22+y1y3y2y3+2y1y3+2y2y3=y12y22+3y1y3+y2y3
      • 问题转换为第一种类型,配方得:式(1)

        • g ( y 1 , y 2 , y 3 ) = ( y 1 + 3 2 y 3 ) 2 − ( y 2 + 1 2 y 3 ) 2 − 2 y 3 2 g(y_1,y_2,y_3)=(y_1+\frac{3}{2}y_3)^2-(y_2+\frac{1}{2}y_3)^2-2y_3^2 g(y1,y2,y3)=(y1+23y3)2(y2+21y3)22y32

      • { z 1 = y 1 + 3 2 y 3 z 2 = y 1 + 1 2 y 3 z 3 = y 3 f = z 1 2 − z 2 2 − 2 z 3 2 \\ \begin{cases} z_1=y_1+\frac{3}{2}y_3\\ z_2=y_1+\frac{1}{2}y_3\\ z_3=y_3 \end{cases} \\ f=z_1^2-z_2^2-2z_3^2 z1=y1+23y3z2=y1+21y3z3=y3f=z12z222z32

      • 解上述线性方程组,得新线性变换 y = Q z \bold{y=Qz} y=Qz及其变换矩阵:
        { y 1 = z 1 − 3 2 z 3 y 2 = z 2 − 1 2 z 3 y 3 = z 3 Q = ( 1 0 − 3 2 0 1 − 1 2 0 0 1 ) \begin{cases} y_1=z_1-\frac{3}{2}z_3\\ y_2=z_2-\frac{1}{2}z_3\\ y_3=z_3 \end{cases} \quad Q=\begin{pmatrix} 1&0&-\frac{3}{2}\\ 0&1&-\frac{1}{2}\\ 0&0&1 \end{pmatrix} y1=z123z3y2=z221z3y3=z3Q= 10001023211

      • 根据线性变换乘法和矩阵乘法的关系 ( x = T y = T ( Q z ) = ( T Q ) z ) (\bold{x=Ty=T(Qz)=(TQ)z}) (x=Ty=T(Qz)=(TQ)z),可求得能将 f f f标准化的线性变换 x = C z \bold{x=Cz} x=Cz的变换矩阵 C \bold{C} C
        C = T Q = ( 1 1 0 1 − 1 0 0 0 1 ) ( 1 0 − 3 2 0 1 − 1 2 0 0 1 ) = ( 1 1 − 2 1 − 1 − 1 0 0 1 ) C=TQ =\begin{pmatrix} 1&1&0\\ 1&-1&0\\ 0&0&1 \end{pmatrix} \begin{pmatrix} 1&0&-\frac{3}{2}\\ 0&1&-\frac{1}{2}\\ 0&0&1 \end{pmatrix} =\begin{pmatrix} 1&1&-{2}\\ 1&-1&-1\\ 0&0&1 \end{pmatrix} C=TQ= 110110001 10001023211 = 110110211

      • 由式(1),标准化后的二次型为 f = z 2 − z 2 2 − 2 z 3 2 f=z^2-z_2^2-2z_3^2 f=z2z222z32

初等变换法

  • 正交变换法和配方法需要考虑的东西较多,操作起来不是很方便,下面介绍一种利用初等变化法来求出能够标准化给定二次型的线性变换矩阵
  • 这个方法的基本原理和利用初等变换操作求解方阵的逆矩阵相同,都是利用一个 n n n阶单位阵来记录一系列的初等变换,得到想要的矩阵

原理

  • 任意实 n n n阶对称阵 A A A都合同于对角阵 Λ \Lambda Λ,即存在可逆矩阵 P \bold P P,使得 P T A P = Λ \bold{P^{T}AP=\Lambda} PTAP=Λ

  • 而可逆矩阵 P \bold{P} P可以表示为若干初等矩阵的乘积; P \bold{P} P= P 1 ⋯ P s \bold{P}_1\cdots\bold{P}_s P1Ps,从而有 ( P 1 ⋯ P s ) T A ( P 1 ⋯ P s ) = Λ \bold{(\bold{P}_1\cdots{P}_s)^{T}A(\bold{P}_1\cdots{P}_s)=\Lambda} (P1Ps)TA(P1Ps)=Λ,即 P s T ⋯ P 1 T A P 1 ⋯ P s = Λ \bold{\bold{P}_s^{T}\cdots{P}_{1}^{T}A\bold{P}_1\cdots{P}_s=\Lambda} PsTP1TAP1Ps=Λ(1)

  • 初等矩阵的转置仍然是初等矩阵,并且矩阵 A \bold{A} A左乘 P i T \bold{P}_i^{T} PiT并右乘 P i \bold{P}_i Pi相当于对矩阵 A \bold{A} A成对的同类型同顺序的行列初等变换(原理参考初等矩阵的性质)

  • 因此,我们可以通过将 A \bold{A} A经过成对初等变换转换为一个对角阵 Λ \bold\Lambda Λ

    • 这个过程对应于(1),每一次初等行变换对应于 P T i \bold{P^{T}}_i PTi,绑定的列变换对应于 P i \bold{P}_i Pi
    • 容易发现 P \bold{P} P= P 1 ⋯ P s \bold{P}_1\cdots\bold{P}_s P1Ps,因此再整个对角化过程中,只需要收集每一次的列变换
    • 收集 P 1 ⋯ P s \bold{P}_1\cdots\bold{P}_s P1Ps的方法是用一个 n n n阶单位阵同步对角化过程中的所有列变换
      • 原理是: E P 1 ⋯ P s \bold{E}\bold{P}_1\cdots\bold{P}_s EP1Ps= E P \bold{EP} EP= P \bold{P} P
      • 我们对行变换不感兴趣,当然行变换也是可以的,求出的是 P T \bold{P}^T PT,需要再次转置才能得到 P \bold{P} P,因此我们直接选择收集列变换更加直接
  • 这部分对初等变换法求解标准化二次型的线性可逆变换矩阵的可行性和正确性给出证明,并且给出了具体的操作方法

总结初等变换法的步骤

  • 构造松散分块矩阵 ( A E ) \bold{\binom{A}{E}} (EA)并执行初等变换

    • 之所以称为松散,因为我们在将 A A A变换为 Λ \Lambda Λ时,分块E只需要接收列变换 P 1 P 2 ⋯ P s \bold{P_1P_2\cdots{P_s}} P1P2Ps​,而不需要做行变换(即忽略行变换)

    • 在实际的操作中,可以分为行变换阶段和列变换阶段

      1. 我们可以先将矩阵 A \bold{A} A用一系列的初等行变换化为上三角矩阵,这部分变换对应于 L = P s T ⋯ P 1 T A \bold{L=\bold{P}_s^{T}\cdots{P}_{1}^{T}}\bold{A} L=PsTP1TA,即依次执行 P 1 T ⋯ P s T \bold{P}_1^{T}\cdots\bold{P}_s^{T} P1TPsT
        • L = ( P s T ( ⋯ ( P 1 T A ) ⋯ ) ) \bold{L=(\bold{P}_s^{T}(\cdots({P}_{1}^{T}A)\cdots))} L=(PsT((P1TA)))
      2. 然后再执依次行对应的列变换 P 1 ⋯ P s \bold{{P}_{1}\cdots{P}_{s}} P1Ps
        • R = ( ( ⋯ ( L P 1 ) ⋯ ) P s ) \bold{R=((\cdots(\bold{L}\bold{P}_1)\cdots){P}_s)} R=(((LP1))Ps)
        • 显然 Λ = R = P s T ⋯ P 1 T A P 1 ⋯ P s \bold{\Lambda=R=\bold{P}_s^{T}\cdots{P}_{1}^{T}A\bold{P}_1\cdots{P}_s} Λ=R=PsTP1TAP1Ps
        • 可见这种变换顺序是正确的
    • A \bold{A} A被一系列成对的初等行列变换转为对角阵 Λ \Lambda Λ,则记录列变换的 E \bold{E} E也就变成了 P = P 1 P 2 ⋯ P s \bold{P=P_1P_2\cdots{P_s}} P=P1P2Ps

  • 因此 P , Λ \bold{P,\Lambda} P,Λ是同时被求解出来:

    • 得到的 P \bold{P} P就是能够满足 P T A P = Λ \bold{P^{{T}}AP=\Lambda} PTAP=Λ(即,使二次型标准化)的可逆矩阵,对应的线性变换为 x = P y \bold{x=Py} x=Py

  • 用初等变换法将 f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3)= x 1 2 + 2 x 2 2 + 2 x 3 2 − 2 x 1 x 2 + 4 x 1 x 3 − 6 x 2 x 3 x_1^2+2x_2^2+2x_3^2-2x_1x_2+4x_1x_3-6x_2x_3 x12+2x22+2x322x1x2+4x1x36x2x3

    • f f f的系数矩阵为

    • A = ( 1 − 1 2 − 1 2 − 3 2 − 3 2 ) \bold{A}=\begin{pmatrix} 1&-1&2\\ -1&2&-3\\ 2&-3&2 \end{pmatrix} A= 112123232

    • A \bold{A} A进初等变换化为对角阵 Λ \bold\Lambda Λ

      • 先执行初等列变换 L = P 1 T ⋯ P s T A \bold{L}=\bold{P}_1^{T}\cdots\bold{P}_s^{T}\bold{A} L=P1TPsTA使 A \bold{A} A化为上三角阵

      • A → r 2 + r 1 ; r 3 − 2 r 1 ( 1 − 1 2 0 1 − 1 0 − 1 − 2 ) → r 3 + r 2 ( 1 − 1 2 0 1 − 1 0 0 − 3 ) = L \bold{A}\xrightarrow{r_2+r_1;r_3-2r_1} \begin{pmatrix} 1&-1&2\\ 0&1&-1\\ 0&-1&-2 \end{pmatrix} \xrightarrow{r_3+r_2} \begin{pmatrix} 1&-1&2\\ 0&1&-1\\ 0&0&-3 \end{pmatrix} =\bold{L} Ar2+r1;r32r1 100111212 r3+r2 100110213 =L

      • 再依次地执行对称的列变换 R = L P 1 ⋯ P s \bold{R}=\bold{L}\bold{P}_1\cdots\bold{P}_s R=LP1Ps(1)

      • L → c 2 + c 1 ; c 3 − 2 c 1 ( 1 0 0 0 1 − 1 0 0 − 3 ) → c 3 + c 2 ( 1 0 0 0 1 0 0 0 − 3 ) = R \bold{L}\xrightarrow{c_2+c_1;c_3-2c_1} \begin{pmatrix} 1&0&0\\ 0&1&-1\\ 0&0&-3 \end{pmatrix} \xrightarrow{c_3+c_2} \begin{pmatrix} 1&0&0\\ 0&1&0\\ 0&0&-3 \end{pmatrix} =\bold{R} Lc2+c1;c32c1 100010013 c3+c2 100010003 =R

      • 再计算 P = E P 1 ⋯ P s \bold{P}=\bold{E}\bold{P}_1\cdots\bold{P}_s P=EP1Ps(2)

      • E = ( 1 0 0 0 1 0 0 0 1 ) → c 2 + c 1 ; c 3 − 2 c 1 ( 1 1 − 2 0 1 0 0 0 1 ) → c 3 + c 2 ( 1 1 − 1 0 1 1 0 0 1 ) = P \bold{E}=\begin{pmatrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end{pmatrix} \xrightarrow{c_2+c_1;c_3-2c_1} \begin{pmatrix} 1&1&-2\\ 0&1&0\\ 0&0&1 \end{pmatrix} \xrightarrow{c_3+c_2} \begin{pmatrix} 1&1&-1\\ 0&1&1\\ 0&0&1 \end{pmatrix} =\bold{P} E= 100010001 c2+c1;c32c1 100110201 c3+c2 100110111 =P

    • 从而 Λ = R = ( 1 0 0 0 1 0 0 0 − 3 ) \bold{\Lambda=R}=\begin{pmatrix} 1&0&0\\ 0&1&0\\ 0&0&-3 \end{pmatrix} Λ=R= 100010003 ; P = ( 1 1 − 1 0 1 1 0 0 1 ) \bold{P}=\begin{pmatrix} 1&1&-1\\ 0&1&1\\ 0&0&1 \end{pmatrix} P= 100110111

    • 即线性变换 x = P y \bold{x=Py} x=Py代入 f ( x ) f(\bold{x}) f(x),得标准形 f ( x ) = f ( P y ) f(\bold{x})=f(\bold{Py}) f(x)=f(Py)= g ( y ) g(\bold{y}) g(y)= y T Λ y \bold{y^T\Lambda{y}} yTΛy,其中 x = ( x 1 , x 2 , x 3 ) \bold{x}=(x_1,x_2,x_3) x=(x1,x2,x3), y = ( y 1 , y 2 , y 3 ) \bold{y}=(y_1,y_2,y_3) y=(y1,y2,y3)

    • 用求和式表示为 f f f= y 1 2 + y 2 2 − 3 y 3 2 y_1^2+y_2^2-3y_3^2 y12+y223y32

相关文章:

LA@二次型@标准化相关原理和方法

文章目录 标准化方法正交变换法🎈求矩阵的特征值求各特征值对应的线性无关特征向量组正交化各个向量组 配方法步骤例例 初等变换法原理总结初等变换法的步骤例 标准化方法 正交变换法🎈 二次型可标准化定理的证明过程给出使用二次型标准化的步骤 该方法…...

Git与IDEA: 解决`dev`分支切换问题及其背后原因 为何在IDEA中无法切换到`dev`分支?全面解析!

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...

什么是JavaScript中的严格模式(strict mode)?应用场景是什么?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 严格模式(Strict Mode):⭐ 使用场景⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&…...

红外特征吸收峰特征总结(主要基团的红外特征吸收峰)

特此记录 anlog 2023年9月11日...

ChatGPT AIGC 完成关联分析散点图的应用

关联分析是数据分析中非常重要的一种技术手段,它能够帮助我们在大量数据中发现变量之间的关系和相互影响。在数据分析领域,关联分析被广泛应用于市场营销、销售预测、客户行为分析等领域。 关联分析的主要功能是通过挖掘数据中的关联规则,来发现数据集中事物之间的关联性。…...

CentOS7.6上实现Spring Boot(JAR包)开机自启

前言 Linux自启(或开机自启)指的是在Linux系统启动时自动运行特定的程序或脚本。当计算机启动时,操作系统会按照一定的顺序加载系统服务和配置,其中包括自动启动一些应用程序或服务。这些应用程序或服务会在系统启动后自动运行&a…...

Java开发之框架(spring、springmvc、springboot、mybatis)【面试篇 完结版】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、框架知识分布二、Spring1. spring-单例bean① 问题引入② 单例bean是线程安全的吗③ 问题总结④ 实战面试 2. spring-AOP① 问题引入② AOP记录操作日志③ …...

QT人脸识别知识

机器学习的作用:根据提供的图片模型通过算法生成数据模型,从而在其它图片中查找相关的目 标。 级联分类器:是用来人脸识别。 在判断之前,我们要先进行学习,生成人脸的模型以便后续识别使用。 人脸识别器:…...

熟悉Redis6

NoSQL数据库简介 技术发展 技术的分类 1、解决功能性的问题:Java、Jsp、RDBMS、Tomcat、HTML、Linux、JDBC、SVN 2、解决扩展性的问题:Struts、Spring、SpringMVC、Hibernate、Mybatis 3、解决性能的问题:NoSQL、Java线程、Hadoop、Nginx…...

ip地址会随网络变化而变化吗

随着科技的飞速发展,互联网已深入我们生活的方方面面。在这庞大的网络世界中,IP地址作为网络通信的基础元素,引起了广泛关注。网络变化与IP地址之间存在着密切的关系。那么,IP地址是否会随着网络变化而变化呢?虎观代理…...

QT连接服务器通信,客户端以及服务器端

服务器端 .h文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTcpServer> //服务器头文件 #include <QTcpSocket> //客户端头文件 #include <QList> //链表头文件&#xff0c;用来存放客户端容器 #include <QDebug> #i…...

Vuex仓库的创建

vuex 的使用 - 创建仓库 文章目录 vuex 的使用 - 创建仓库1.安装 vuex2.新建 store/index.js 专门存放 vuex3.创建仓库 store/index.js4 在 main.js 中导入挂载到 Vue 实例上5.测试打印Vuex 1.安装 vuex 安装vuex与vue-router类似&#xff0c;vuex是一个独立存在的插件&#x…...

C++中的红黑树

红黑树 搜索二叉树搜索二叉树的模拟实现平衡搜索二叉树(AVL Tree)平衡搜索二叉树的模拟实现红黑树(Red Black Tree)红黑树的模拟实现 红黑树的应用(Map 和 Set)Map和Set的封装 搜索二叉树 搜索二叉树的概念&#xff1a;二叉搜索树又称二叉排序树&#xff0c;它或者是一棵空树&…...

SQL语法知识回顾

一、SQL语言的分类 由于数据库管理系统&#xff08;数据库软件&#xff09;功能非常多&#xff0c;不仅仅是存储数据&#xff0c;还要包含&#xff1a;数据的管理、表的管理、库的管理、账户管理、权限管理等等。所以&#xff0c;操作数据库的SQL语言&#xff0c;也基于功能&am…...

Java基础二十七(泛型)

泛型 Java 泛型&#xff08;generics&#xff09;是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制&#xff0c;该机制允许程序员在编译时检测到非法的类型。 泛型的本质是参数化类型&#xff0c;也就是说所操作的数据类型被指定为一个参数。 Java的泛型是伪…...

Python入门教程36:urllib网页请求模块的用法

urllib是Python中的一个模块&#xff0c;它提供了一些函数和类&#xff0c;用于发送HTTP请求、处理URL编码、解析URL等操作。无需安装即可使用&#xff0c;包含了4个模块&#xff1a; #我的Python教程 #官方微信公众号&#xff1a;wdPythonrequest&#xff1a;它是最基本的htt…...

LeetCode 每日一题 2023/9/4-2023/9/10

记录了初步解题思路 以及本地实现代码&#xff1b;并不一定为最优 也希望大家能一起探讨 一起进步 目录 9/4 449. 序列化和反序列化二叉搜索树9/5 2605. 从两个数字数组里生成最小数字9/6 1123. 最深叶节点的最近公共祖先9/7 2594. 修车的最少时间9/8 2651. 计算列车到站时间9/…...

C# Onnx Yolov8 Seg 分割

效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System…...

Postman接口测试流程

一、工具安装 ● 安装Postman有中文版和英文版&#xff0c;可以选择自己喜欢的版本即可。安装时重新选择一下安装路径&#xff08;也可以默认路径&#xff09;&#xff0c;一直下一步安装完成即可。&#xff08;本文档采用英文版本&#xff09;安装文件网盘路径链接&#xff1…...

探索GreatADM:如何快速定义监控

引文 在数据库运维过程中&#xff0c;所使用的运维管理平台是否存在这样的问题&#xff1a; 1、默认监控粒度不够,业务需要更细颗粒度的监控数据。2、平台默认的监控命令不适合,需要调整阈值量身定制监控策略。3、不同类型的实例或组件需要有不同的监控重点,但管理平台监控固…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...