当前位置: 首页 > news >正文

QIfw制作软件安装程序

前言

Qt Installer Framework是Qt默认包的发布框架。它很方便,使用静态编译Qt制作而成。从Qt的下载地址中下载Qt Installer Framework,地址是:http://download.qt.io/official_releases/qt-installer-framework/ 。支持我们自定义一些我们需要的东西包括页面、交互等。

框架介绍

组成部分:config文件夹、packages文件夹

config/config.xml:

<?xml version="1.0" encoding="UTF-8"?>
<Installer><Name>在线快乐交友平台</Name><Version>1.0.0</Version><Title>在线快乐交友平台</Title><Publisher>快乐交友有限公司</Publisher><ProductUrl>http://www.getfriend.com</ProductUrl><!-- 64*64 --><Logo>logo.png</Logo><Watermark>water.png</Watermark><StartMenuDir>happy getFriend</StartMenuDir>&

相关文章:

QIfw制作软件安装程序

前言 Qt Installer Framework是Qt默认包的发布框架。它很方便,使用静态编译Qt制作而成。从Qt的下载地址中下载Qt Installer Framework,地址是:http://download.qt.io/official_releases/qt-installer-framework/ 。支持我们自定义一些我们需要的东西包括页面、交互等。 框…...

【C++】C++入门(上)

前言&#xff1a; C是在C语言的基础上不断添加东西形成的一门语言&#xff0c;在C语言的基础上引入了面向对象的思想。因此C既是面向对象的语言&#xff0c;也是面向过程的语言。因为C是以C语言为基础的&#xff0c;所以基本上C兼容所有的C语言。目前最常用的版本是C98和C11这两…...

5. Kimball维度建模常用术语及概念(一)

文章目录维度建模过程相关概念1. 收集业务需求与数据实现2. 协作维度建模研讨3. 四步骤维度设计过程4. 业务过程5. 粒度6. 描述环境的维度7. 用于度量的事实8. 维度模型事实表技术术语1. 事实表结构2. 可加、半可加、不可加事实3. 事实表中的空值4. 一致性事实5. 事务事实表6. …...

内核调试之Panic-Oops日志分析

这部分我们接着之前的思考&#xff0c;看看内核异常日志的分析。 1 Panic 调试 2 Oops调试 内核出现Panic或Oops错误&#xff0c;如何分析定位问题原因&#xff1f; 首先&#xff0c;保留现场&#xff0c;如下所示为一次非法虚拟地址访问错误。 EXT4-fs (sdc3): recovery c…...

论文解读 | [AAAI2020] 你所需要的是边界:走向任意形状的文本定位

目录 1、研究背景 2、研究的目的 3、方法论 3.1 Boundary Point Detection Network(BPDN) 3.2 Recognition Network 3.3 Loss Functions 4、实验及结果 论文连接&#xff1a;https://ojs.aaai.org/index.php/AAAI/article/view/6896 1、研究背景 最近&#xff0c;旨在…...

数据挖掘流程简单示例10min

数据挖掘流程简单示例10min 套路&#xff1a; 准备数据实现算法测试算法 任务1&#xff1a;亲和性分析 如果一个顾客买了商品X&#xff0c;那么他们可能愿意买商品Y衡量方法&#xff1a; 支持度support : 所有买X的人数 置信度confidence : 所有买X和Y的人数所有买X的人数…...

KDJB1200六相继电保护测试仪

一、概述 KDJB1200继电保护测试仪是在参照电力部颁发的《微机型继电保护试验装置技术条件(讨论稿)》的基础上&#xff0c;广泛听取用户意见&#xff0c;总结目前国内同类产品优缺点&#xff0c;充分使用现代新的的微电子技术和器件实现的一种新型小型化微机继电保护测试仪。可…...

从WEB到PWA 开发-发布-安装

见意如题&#xff01;本文主要来说说PWA开发&#xff01;作为一个前端程序员&#xff0c;在没有任何Android/IOS的开发情况下&#xff0c;想想我们有多少种方法来开发一个原生移动应用程序&#xff01;我们可以有非原生、混合开发&#xff0c;PWA等等手段。类似uniapp&#xff…...

FPGA纯vhdl实现MIPI CSI2 RX视频解码输出,OV13850采集,提供工程源码和技术支持

目录1、前言2、Xilinx官方主推的MIPI解码方案3、纯Vhdl方案解码MIPI4、vivado工程介绍5、上板调试验证6、福利&#xff1a;工程代码的获取1、前言 FPGA图像采集领域目前协议最复杂、技术难度最高的应该就是MIPI协议了&#xff0c;MIPI解码难度之高&#xff0c;令无数英雄竞折腰…...

《NFL橄榄球》:卡罗来纳黑豹·橄榄1号位

卡罗来纳黑豹&#xff08;英语&#xff1a;Carolina Panthers&#xff09;是一支位于北卡罗来纳州夏洛特的职业美式橄榄球球队。他们是国家美式橄榄球联合会的南区其中一支球队。他们与杰克逊维尔美洲虎在1995年加入NFL&#xff0c;成为扩充球队。 2018年球队市值为23亿美元&am…...

我说我为什么抽不到SSR,原来是这段代码在作祟...

本文是龚国玮所写&#xff0c;熊哥有所新增修改删减&#xff0c;原文见文末。 我说我为什么抽不到SSR&#xff0c;原来是加权随机算法在作祟 阅读本文需要做好心理准备&#xff0c;建议带着深究到底的决心和毅力进行学习&#xff01; 灵魂拷问 为什么有 50% 的几率获得金币&a…...

MySQL MGR 集群新增节点

前言 服务器规划现状&#xff08;CentOS7.x&#xff09; IP地址主机名部署角色192.168.x.101mysql01mysql192.168.x.102mysql02mysql192.168.x.103mysql03mysql192.168.x.104proxysql01proxysql、keepalived192.168.x.105proxysql02proxysql、keepalived 新增服务器IP&#x…...

【单目标优化算法】蜣螂优化算法(Dung beetle optimizer,DBO)(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

【C++】类和对象入门必知

面向过程和面向对象的初步认识类的引入类的定义类的访问限定符封装类的作用域类的实例化类对象模型this指针C语言和C实现Stack的对比面向过程和面向对象的初步认识 C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的步骤&#xff0c;通过函数调用逐步解…...

day38 动态规划 | 509、斐波那契数 70、爬楼梯 746、使用最小花费爬楼梯

题目 509、斐波那契数 斐波那契数&#xff0c;通常用 F(n) 表示&#xff0c;形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始&#xff0c;后面的每一项数字都是前面两项数字的和。也就是&#xff1a; F(0) 0&#xff0c;F(1) 1 F(n) F(n - 1) F(n - 2)&#xff0c;其…...

2023年备考软考必须知道的6件事

不知不觉&#xff0c;距离2023年上半年软考也只有不到100天的时间了&#xff0c;报名入口也将在3月13日正式开通&#xff0c;你是正在犹豫是否参加考试? 还是已经开始着手准备复习? 关于软考考试你还有哪些疑问? 2023年备考软考必须知道的6件事&#xff0c;建议收藏&#xf…...

GLOG如何控制输出的小数点位数

1 问题 在小白的蹩脚翻译演绎型博文《GLOG从入门到入门》中&#xff0c;有位热心读者提问说&#xff1a;在保存日志时&#xff0c;浮点型变量的小数位数如何设置&#xff1f; 首先感谢这位“嘻嘻哈哈的地球人”赏光阅读了小白这不太通顺的博客文章&#xff0c;并提出了一个很…...

2022年全国职业院校技能大赛(中职组)网络安全竞赛试题A(6)

目录 模块A 基础设施设置与安全加固 一、项目和任务描述&#xff1a; 二、服务器环境说明 三、具体任务&#xff08;每个任务得分以电子答题卡为准&#xff09; A-1任务一&#xff1a;登录安全加固&#xff08;Windows&#xff09; 1.密码策略 a.密码策略必须同时满足大小…...

Safety-Gym环境配置与安

官网&#xff1a; https://github.com/openai/safety-gym https://github.com/openai/safety-starter-agents 一、安装依赖环境配置 建议使用python 3.7及以下环境&#xff0c;因为官方的safety-rl是基于tensorflow1.13.1实现&#xff0c;而tensorflow1.13.1只能支持python…...

3月再不跳槽,就晚了

从时间节点上来看&#xff0c;3月、4月是每年跳槽的黄金季&#xff01; 以 BAT 为代表的互联网大厂&#xff0c;无论是薪资待遇、还是平台和福利&#xff0c;都一直是求职者眼中的香饽饽&#xff0c;“大厂经历” 在国内就业环境中无异于一块金子招牌。在这金三银四的时间里&a…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...