当前位置: 首页 > news >正文

华为OD机试真题Python实现【RSA 加密算法】真题+解题思路+代码(20222023)

RSA 加密算法

题目

RSA 加密算法在网络安全世界中无处不在
它利用了极大整数因数分解的困难度,数据越大安全系数越高
给定了一个32位正整数,请对其进行因数分解
找出哪两个素数的乘积


🔥🔥🔥🔥🔥👉👉👉👉👉👉 华为OD机试(Python)真题目录汇总


## 输入

一个正整数num
0 < num <= 2147483647

输出描述

如果成功找到以单个空格分割
从小到大输出两个素数
分解失败请输出-1 -1

示例一

输入

15

输出

3 5

说明

因数分解后 3 * 5 = 15
从小到大后输出 3 5

相关文章:

华为OD机试真题Python实现【RSA 加密算法】真题+解题思路+代码(20222023)

RSA 加密算法 题目 RSA 加密算法在网络安全世界中无处不在 它利用了极大整数因数分解的困难度,数据越大安全系数越高 给定了一个32位正整数,请对其进行因数分解 找出哪两个素数的乘积 🔥🔥🔥🔥🔥👉👉👉👉👉👉 华为OD机试(Python)真题目录汇总 ## 输…...

App.vue中读取不到路由的信息

问题&#xff1a; ​ 首先定义了一个路由&#xff0c;并且在路由元里面存储了一个变量&#xff0c;在App.vue里面访问这个变量的时候却显示undefined&#xff01;在路由对应的组件中却能访问到&#xff01; 定义的路由元信息&#xff1a; 为啥访问不到…,懵逼的我在App.vue里…...

Lambda表达式详解

文章目录1、Lambda表达式简介2、如何使用Lambda表达式3、在哪里使用Lambda表达式3.1 函数式接口3.2函数描述符4、四大核心函数式接口4.1 Predicate4.2 Consumer4.3 Function4.4 Supplier5、方法引用5.1 方法引用的使用情况6、构造器引用7、数组引用8、复合Lambda表达式的有用方…...

网关的通用设计框架

概念 网关&#xff0c;很多地方将网关比如成门&#xff0c; 没什么问题&#xff0c; 但是需要区分网关与网桥的区别。 网桥:工作在数据链路层&#xff0c;在不同或相同类型的LAN之间存储并转发数据帧&#xff0c;必要时进行链路层上的协议转换。可连接两个或多个网络&#xf…...

API 接口应该如何设计?如何保证安全?如何签名?如何防重?

说明&#xff1a;在实际的业务中&#xff0c;难免会跟第三方系统进行数据的交互与传递&#xff0c;那么如何保证数据在传输过程中的安全呢&#xff08;防窃取&#xff09;&#xff1f;除了https的协议之外&#xff0c;能不能加上通用的一套算法以及规范来保证传输的安全性呢&am…...

LeetCode-131. 分割回文串

目录题目思路回溯题目来源 131. 分割回文串 题目思路 切割问题类似组合问题。 例如对于字符串abcdef&#xff1a; 组合问题&#xff1a;选取一个a之后&#xff0c;在bcdef中再去选取第二个&#xff0c;选取b之后在cdef中再选取第三个…。切割问题&#xff1a;切割一个a之后&…...

【C++】string类的基本使用

层楼终究误少年&#xff0c;自由早晚乱余生。你我山前没相见&#xff0c;山后别相逢… 文章目录一、编码&#xff08;ascll、unicode字符集、常用的utf-8编码规则、GBK&#xff09;1.详谈各种编码规则2.汉字在不同的编码规则中所占字节数二、string类的基本使用1.string类的本质…...

【第一章 - 绪论】- 数据结构(近八千字详解)

目录 一、 数据结构的研究内容 二、基本概念和术语 2.1 - 数据、数据元素、数据项和数据对象 2.2 - 数据结构 2.2.1 - 逻辑结构 2.2.2 - 存储结构 2.3 - 数据类型和抽象数据类型 三、抽象数据类型的表现与实现 四、算法和算法分析 4.1 - 算法的定义及特性 4.2 - 评价…...

QIfw制作软件安装程序

前言 Qt Installer Framework是Qt默认包的发布框架。它很方便,使用静态编译Qt制作而成。从Qt的下载地址中下载Qt Installer Framework,地址是:http://download.qt.io/official_releases/qt-installer-framework/ 。支持我们自定义一些我们需要的东西包括页面、交互等。 框…...

【C++】C++入门(上)

前言&#xff1a; C是在C语言的基础上不断添加东西形成的一门语言&#xff0c;在C语言的基础上引入了面向对象的思想。因此C既是面向对象的语言&#xff0c;也是面向过程的语言。因为C是以C语言为基础的&#xff0c;所以基本上C兼容所有的C语言。目前最常用的版本是C98和C11这两…...

5. Kimball维度建模常用术语及概念(一)

文章目录维度建模过程相关概念1. 收集业务需求与数据实现2. 协作维度建模研讨3. 四步骤维度设计过程4. 业务过程5. 粒度6. 描述环境的维度7. 用于度量的事实8. 维度模型事实表技术术语1. 事实表结构2. 可加、半可加、不可加事实3. 事实表中的空值4. 一致性事实5. 事务事实表6. …...

内核调试之Panic-Oops日志分析

这部分我们接着之前的思考&#xff0c;看看内核异常日志的分析。 1 Panic 调试 2 Oops调试 内核出现Panic或Oops错误&#xff0c;如何分析定位问题原因&#xff1f; 首先&#xff0c;保留现场&#xff0c;如下所示为一次非法虚拟地址访问错误。 EXT4-fs (sdc3): recovery c…...

论文解读 | [AAAI2020] 你所需要的是边界:走向任意形状的文本定位

目录 1、研究背景 2、研究的目的 3、方法论 3.1 Boundary Point Detection Network(BPDN) 3.2 Recognition Network 3.3 Loss Functions 4、实验及结果 论文连接&#xff1a;https://ojs.aaai.org/index.php/AAAI/article/view/6896 1、研究背景 最近&#xff0c;旨在…...

数据挖掘流程简单示例10min

数据挖掘流程简单示例10min 套路&#xff1a; 准备数据实现算法测试算法 任务1&#xff1a;亲和性分析 如果一个顾客买了商品X&#xff0c;那么他们可能愿意买商品Y衡量方法&#xff1a; 支持度support : 所有买X的人数 置信度confidence : 所有买X和Y的人数所有买X的人数…...

KDJB1200六相继电保护测试仪

一、概述 KDJB1200继电保护测试仪是在参照电力部颁发的《微机型继电保护试验装置技术条件(讨论稿)》的基础上&#xff0c;广泛听取用户意见&#xff0c;总结目前国内同类产品优缺点&#xff0c;充分使用现代新的的微电子技术和器件实现的一种新型小型化微机继电保护测试仪。可…...

从WEB到PWA 开发-发布-安装

见意如题&#xff01;本文主要来说说PWA开发&#xff01;作为一个前端程序员&#xff0c;在没有任何Android/IOS的开发情况下&#xff0c;想想我们有多少种方法来开发一个原生移动应用程序&#xff01;我们可以有非原生、混合开发&#xff0c;PWA等等手段。类似uniapp&#xff…...

FPGA纯vhdl实现MIPI CSI2 RX视频解码输出,OV13850采集,提供工程源码和技术支持

目录1、前言2、Xilinx官方主推的MIPI解码方案3、纯Vhdl方案解码MIPI4、vivado工程介绍5、上板调试验证6、福利&#xff1a;工程代码的获取1、前言 FPGA图像采集领域目前协议最复杂、技术难度最高的应该就是MIPI协议了&#xff0c;MIPI解码难度之高&#xff0c;令无数英雄竞折腰…...

《NFL橄榄球》:卡罗来纳黑豹·橄榄1号位

卡罗来纳黑豹&#xff08;英语&#xff1a;Carolina Panthers&#xff09;是一支位于北卡罗来纳州夏洛特的职业美式橄榄球球队。他们是国家美式橄榄球联合会的南区其中一支球队。他们与杰克逊维尔美洲虎在1995年加入NFL&#xff0c;成为扩充球队。 2018年球队市值为23亿美元&am…...

我说我为什么抽不到SSR,原来是这段代码在作祟...

本文是龚国玮所写&#xff0c;熊哥有所新增修改删减&#xff0c;原文见文末。 我说我为什么抽不到SSR&#xff0c;原来是加权随机算法在作祟 阅读本文需要做好心理准备&#xff0c;建议带着深究到底的决心和毅力进行学习&#xff01; 灵魂拷问 为什么有 50% 的几率获得金币&a…...

MySQL MGR 集群新增节点

前言 服务器规划现状&#xff08;CentOS7.x&#xff09; IP地址主机名部署角色192.168.x.101mysql01mysql192.168.x.102mysql02mysql192.168.x.103mysql03mysql192.168.x.104proxysql01proxysql、keepalived192.168.x.105proxysql02proxysql、keepalived 新增服务器IP&#x…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

Unity中的transform.up

2025年6月8日&#xff0c;周日下午 在Unity中&#xff0c;transform.up是Transform组件的一个属性&#xff0c;表示游戏对象在世界空间中的“上”方向&#xff08;Y轴正方向&#xff09;&#xff0c;且会随对象旋转动态变化。以下是关键点解析&#xff1a; 基本定义 transfor…...

聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇

根据 QYResearch 发布的市场报告显示&#xff0c;全球市场规模预计在 2031 年达到 9848 万美元&#xff0c;2025 - 2031 年期间年复合增长率&#xff08;CAGR&#xff09;为 3.7%。在竞争格局上&#xff0c;市场集中度较高&#xff0c;2024 年全球前十强厂商占据约 74.0% 的市场…...