当前位置: 首页 > news >正文

华为OD机试真题Python实现【RSA 加密算法】真题+解题思路+代码(20222023)

RSA 加密算法

题目

RSA 加密算法在网络安全世界中无处不在
它利用了极大整数因数分解的困难度,数据越大安全系数越高
给定了一个32位正整数,请对其进行因数分解
找出哪两个素数的乘积


🔥🔥🔥🔥🔥👉👉👉👉👉👉 华为OD机试(Python)真题目录汇总


## 输入

一个正整数num
0 < num <= 2147483647

输出描述

如果成功找到以单个空格分割
从小到大输出两个素数
分解失败请输出-1 -1

示例一

输入

15

输出

3 5

说明

因数分解后 3 * 5 = 15
从小到大后输出 3 5

相关文章:

华为OD机试真题Python实现【RSA 加密算法】真题+解题思路+代码(20222023)

RSA 加密算法 题目 RSA 加密算法在网络安全世界中无处不在 它利用了极大整数因数分解的困难度,数据越大安全系数越高 给定了一个32位正整数,请对其进行因数分解 找出哪两个素数的乘积 🔥🔥🔥🔥🔥👉👉👉👉👉👉 华为OD机试(Python)真题目录汇总 ## 输…...

App.vue中读取不到路由的信息

问题&#xff1a; ​ 首先定义了一个路由&#xff0c;并且在路由元里面存储了一个变量&#xff0c;在App.vue里面访问这个变量的时候却显示undefined&#xff01;在路由对应的组件中却能访问到&#xff01; 定义的路由元信息&#xff1a; 为啥访问不到…,懵逼的我在App.vue里…...

Lambda表达式详解

文章目录1、Lambda表达式简介2、如何使用Lambda表达式3、在哪里使用Lambda表达式3.1 函数式接口3.2函数描述符4、四大核心函数式接口4.1 Predicate4.2 Consumer4.3 Function4.4 Supplier5、方法引用5.1 方法引用的使用情况6、构造器引用7、数组引用8、复合Lambda表达式的有用方…...

网关的通用设计框架

概念 网关&#xff0c;很多地方将网关比如成门&#xff0c; 没什么问题&#xff0c; 但是需要区分网关与网桥的区别。 网桥:工作在数据链路层&#xff0c;在不同或相同类型的LAN之间存储并转发数据帧&#xff0c;必要时进行链路层上的协议转换。可连接两个或多个网络&#xf…...

API 接口应该如何设计?如何保证安全?如何签名?如何防重?

说明&#xff1a;在实际的业务中&#xff0c;难免会跟第三方系统进行数据的交互与传递&#xff0c;那么如何保证数据在传输过程中的安全呢&#xff08;防窃取&#xff09;&#xff1f;除了https的协议之外&#xff0c;能不能加上通用的一套算法以及规范来保证传输的安全性呢&am…...

LeetCode-131. 分割回文串

目录题目思路回溯题目来源 131. 分割回文串 题目思路 切割问题类似组合问题。 例如对于字符串abcdef&#xff1a; 组合问题&#xff1a;选取一个a之后&#xff0c;在bcdef中再去选取第二个&#xff0c;选取b之后在cdef中再选取第三个…。切割问题&#xff1a;切割一个a之后&…...

【C++】string类的基本使用

层楼终究误少年&#xff0c;自由早晚乱余生。你我山前没相见&#xff0c;山后别相逢… 文章目录一、编码&#xff08;ascll、unicode字符集、常用的utf-8编码规则、GBK&#xff09;1.详谈各种编码规则2.汉字在不同的编码规则中所占字节数二、string类的基本使用1.string类的本质…...

【第一章 - 绪论】- 数据结构(近八千字详解)

目录 一、 数据结构的研究内容 二、基本概念和术语 2.1 - 数据、数据元素、数据项和数据对象 2.2 - 数据结构 2.2.1 - 逻辑结构 2.2.2 - 存储结构 2.3 - 数据类型和抽象数据类型 三、抽象数据类型的表现与实现 四、算法和算法分析 4.1 - 算法的定义及特性 4.2 - 评价…...

QIfw制作软件安装程序

前言 Qt Installer Framework是Qt默认包的发布框架。它很方便,使用静态编译Qt制作而成。从Qt的下载地址中下载Qt Installer Framework,地址是:http://download.qt.io/official_releases/qt-installer-framework/ 。支持我们自定义一些我们需要的东西包括页面、交互等。 框…...

【C++】C++入门(上)

前言&#xff1a; C是在C语言的基础上不断添加东西形成的一门语言&#xff0c;在C语言的基础上引入了面向对象的思想。因此C既是面向对象的语言&#xff0c;也是面向过程的语言。因为C是以C语言为基础的&#xff0c;所以基本上C兼容所有的C语言。目前最常用的版本是C98和C11这两…...

5. Kimball维度建模常用术语及概念(一)

文章目录维度建模过程相关概念1. 收集业务需求与数据实现2. 协作维度建模研讨3. 四步骤维度设计过程4. 业务过程5. 粒度6. 描述环境的维度7. 用于度量的事实8. 维度模型事实表技术术语1. 事实表结构2. 可加、半可加、不可加事实3. 事实表中的空值4. 一致性事实5. 事务事实表6. …...

内核调试之Panic-Oops日志分析

这部分我们接着之前的思考&#xff0c;看看内核异常日志的分析。 1 Panic 调试 2 Oops调试 内核出现Panic或Oops错误&#xff0c;如何分析定位问题原因&#xff1f; 首先&#xff0c;保留现场&#xff0c;如下所示为一次非法虚拟地址访问错误。 EXT4-fs (sdc3): recovery c…...

论文解读 | [AAAI2020] 你所需要的是边界:走向任意形状的文本定位

目录 1、研究背景 2、研究的目的 3、方法论 3.1 Boundary Point Detection Network(BPDN) 3.2 Recognition Network 3.3 Loss Functions 4、实验及结果 论文连接&#xff1a;https://ojs.aaai.org/index.php/AAAI/article/view/6896 1、研究背景 最近&#xff0c;旨在…...

数据挖掘流程简单示例10min

数据挖掘流程简单示例10min 套路&#xff1a; 准备数据实现算法测试算法 任务1&#xff1a;亲和性分析 如果一个顾客买了商品X&#xff0c;那么他们可能愿意买商品Y衡量方法&#xff1a; 支持度support : 所有买X的人数 置信度confidence : 所有买X和Y的人数所有买X的人数…...

KDJB1200六相继电保护测试仪

一、概述 KDJB1200继电保护测试仪是在参照电力部颁发的《微机型继电保护试验装置技术条件(讨论稿)》的基础上&#xff0c;广泛听取用户意见&#xff0c;总结目前国内同类产品优缺点&#xff0c;充分使用现代新的的微电子技术和器件实现的一种新型小型化微机继电保护测试仪。可…...

从WEB到PWA 开发-发布-安装

见意如题&#xff01;本文主要来说说PWA开发&#xff01;作为一个前端程序员&#xff0c;在没有任何Android/IOS的开发情况下&#xff0c;想想我们有多少种方法来开发一个原生移动应用程序&#xff01;我们可以有非原生、混合开发&#xff0c;PWA等等手段。类似uniapp&#xff…...

FPGA纯vhdl实现MIPI CSI2 RX视频解码输出,OV13850采集,提供工程源码和技术支持

目录1、前言2、Xilinx官方主推的MIPI解码方案3、纯Vhdl方案解码MIPI4、vivado工程介绍5、上板调试验证6、福利&#xff1a;工程代码的获取1、前言 FPGA图像采集领域目前协议最复杂、技术难度最高的应该就是MIPI协议了&#xff0c;MIPI解码难度之高&#xff0c;令无数英雄竞折腰…...

《NFL橄榄球》:卡罗来纳黑豹·橄榄1号位

卡罗来纳黑豹&#xff08;英语&#xff1a;Carolina Panthers&#xff09;是一支位于北卡罗来纳州夏洛特的职业美式橄榄球球队。他们是国家美式橄榄球联合会的南区其中一支球队。他们与杰克逊维尔美洲虎在1995年加入NFL&#xff0c;成为扩充球队。 2018年球队市值为23亿美元&am…...

我说我为什么抽不到SSR,原来是这段代码在作祟...

本文是龚国玮所写&#xff0c;熊哥有所新增修改删减&#xff0c;原文见文末。 我说我为什么抽不到SSR&#xff0c;原来是加权随机算法在作祟 阅读本文需要做好心理准备&#xff0c;建议带着深究到底的决心和毅力进行学习&#xff01; 灵魂拷问 为什么有 50% 的几率获得金币&a…...

MySQL MGR 集群新增节点

前言 服务器规划现状&#xff08;CentOS7.x&#xff09; IP地址主机名部署角色192.168.x.101mysql01mysql192.168.x.102mysql02mysql192.168.x.103mysql03mysql192.168.x.104proxysql01proxysql、keepalived192.168.x.105proxysql02proxysql、keepalived 新增服务器IP&#x…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...