如何解决过拟合与欠拟合,及理解k折交叉验证
模型欠拟合:在训练集以及测试集上同时具有较⾼的误差,此时模型的偏差较⼤;
模型过拟合:在训练集上具有较低的误差,在测试集上具有较⾼的误差,此时模型的⽅差较⼤。

如何解决⽋拟合:
- 添加其他特征项。组合、泛化、相关性、上下⽂特征、平台特征等特征是特征添加的重要⼿段,有时候特征项不够会导致模型⽋拟合。
- 添加多项式特征。例如将线性模型添加⼆次项或三次项使模型泛化能⼒更强。增加了⼆阶多项式,保证了模型⼀定的拟合程度。
- 可以增加模型的复杂程度。
- 减⼩正则化系数。正则化的⽬的是⽤来防⽌过拟合的,但是现在模型出现了⽋拟合,则需要减少正则化参数。
如何解决过拟合:
- 重新清洗数据,数据不纯会导致过拟合,此类情况需要重新清洗数据。
- 增加训练样本数量。
- 降低模型复杂程度。
- 增⼤正则项系数。
- 采⽤dropout⽅法,dropout⽅法,通俗的讲就是在训练的时候让神经元以⼀定的概率不⼯作。
- 减少迭代次数。
- 增⼤学习率。
- 添加噪声数据。
- 树结构中,可以对树进⾏剪枝。
- 减少特征项。
k折交叉验证
- 将含有N个样本的数据集,分成K份,每份含有N/K个样本。选择其中1份作为测试集,另外K-1份作为训练集,测试集就有K种情况。
- 在每种情况中,⽤训练集训练模型,⽤测试集测试模型,计算模型的泛化误差。
- 交叉验证重复K次,每份验证⼀次,平均K次的结果或者使⽤其它结合⽅式,最终得到⼀个单⼀估测,得到模型最终的泛化误差。
- 将K种情况下,模型的泛化误差取均值,得到模型最终的泛化误差。
- ⼀般 。 k折交叉验证的优势在于,同时重复运⽤随机产⽣的⼦样本进⾏训练和验证,每次的结果验证⼀次,10折交叉验证是最常⽤的。
- 训练集中样本数量要⾜够多,⼀般⾄少⼤于总样本数的50%。
- 训练集和测试集必须从完整的数据集中均匀取样。均匀取样的⽬的是希望减少训练集、测试集与原数据集之间的偏差。当样本数量⾜够多时,通过随机取样,便可以实现均匀取样的效果。
相关文章:
如何解决过拟合与欠拟合,及理解k折交叉验证
模型欠拟合:在训练集以及测试集上同时具有较⾼的误差,此时模型的偏差较⼤; 模型过拟合:在训练集上具有较低的误差,在测试集上具有较⾼的误差,此时模型的⽅差较⼤。 如何解决⽋拟合: 添加其他特…...
Kotlin 34. recyclerView 案例:显示列表
Kotlin 案例1. recyclerView:显示列表 这里,我们将通过几个案例来介绍如何使用recyclerView。RecyclerView 是 ListView 的高级版本。 当我们有很长的项目列表需要显示的时候,我们就可以使用 RecyclerView。 它具有重用其视图的能力。 在 Re…...
JAVA练习58-汉明距离、颠倒二进制位
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 一、题目1-汉明距离 1.题目描述 2.思路与代码 2.1 思路 2.2 代码 二、题目2-颠倒二进制位 1.题目描述 2.思路与代码 2.1 思路 2.2 代码 总结 前言 提示…...
优炫数据库百城巡展,成都首站圆满举行
2月17日,由四川省大数据发展研究会、北京优炫软件股份有限公司联合举办的“首届四川省推进信息技术应用创新产业服务研讨会暨优炫数据库百城巡展成都首站隆重举行。此次活动是优炫数据库百城巡展的起点站,更是国产数据库市场美好乐章的一次强力鸣奏。 来…...
【20230210】二叉树小结
二叉树的种类二叉树的主要形式:满二叉树和完全二叉树。满二叉树深度为k,有2^k-1个节点的二叉树完全二叉树除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。二叉搜索树…...
openCV—图像入门(python)
目录 目标 使用OpenCV 显示图像 写入图像 总结使用 使用Matplotlib 注:图片后续补充 目标 在这里,你将了解如何使用Python编程语言中的OpenCV库,实现读取、显示和保存图像的功能。具体来说,你将学习以下函数的用法…...
关于一个Java程序员马上要笔试了,临时抱佛脚,一晚上恶补45道简单SQL题,希望笔试能通过
MySQL随手练 / DQL篇 MySQL随手练——DQL篇 题目网盘下载:https://pan.baidu.com/s/1Ky-RJRNyfvlEJldNL_yQEQ?pwdlana 初始数据 表 course 表 student 表 teacher 表 sc 答案 :) —> :( —> :) 1. 查询 "01"课程比"02"课程成绩高的学生…...
PyTorch深度学习实战
本专栏分为两大部分,专栏内容如下: 第1部分 探讨PyTorch与其他深度学习框架的区别。 如何在PyTorch Hub中下载和运行模型。 PyTorch的基本构建组件——张量 展示不同类型的数据如何被表示为张量,以及深度学习模型期望构造什么样的张量。 梯度…...
leetcode 1011. Capacity To Ship Packages Within D Days(D天内运送包裹的容量)
数组的每个元素代表每个货物的重量,注意这个货物是有先后顺序的,先来的要先运输,所以不能改变这些元素的顺序。 要days天内把这些货物全部运输出去,问所需船的最小载重量。 思路: 数组内数字顺序不能变,就…...
支持向量机SVM详细原理,Libsvm工具箱详解,svm参数说明,svm应用实例,神经网络1000案例之15
目录 支持向量机SVM的详细原理 SVM的定义 SVM理论 Libsvm工具箱详解 简介 参数说明 易错及常见问题 SVM应用实例,基于SVM的股票价格预测 支持向量机SVM的详细原理 SVM的定义 支持向量机(support vector machines, SVM)是一种二分类模型&a…...
Mac 上搭建 iOS WebDriverAgent 环境
文章目录Mac环境搭建配置 Xcode 生成 WDA常见问题brew 安装失败Mac环境搭建 macOS 系统电脑:12.6.2 Xcode:14.0.1(xcodebuild -version) appium Desktop:1.21.0 (下载链接) Appium Desktop 1.22.0 ,从该版…...
python学习笔记之例题篇NO.3
获得用户输入的一个整数N,输出N中所出现不同数字的和。 s list(set(list(input())))# ① r…...
【Kubernetes】第七篇 - Service 服务介绍和使用
一,前言 上一篇,通过配置一个 Deployment 对象,在内部创建副本集对象,副本集帮我们创建了 3 个 pod 副本 由于 pod 存在 IP 漂移现象,pod 的创建和重启会导致 IP 变化; 本篇,介绍 Service 服…...
Linux 终端复用器Tmux
目录 Tmux讲解 配置tmux 配置tmux会话 配置tmux窗口(在会话界面进行配置) 配置tmux面板 配置窗口共享同步 Tmux讲解 RHEL5/6/7使用的是screen软件包 RHEL8使用的是tumx软件包(功能更强大,更易用) tmux的三个基本…...
Hadoop集群模式安装(Cluster mode)
1、Hadoop源码编译 安装包、源码包下载地址 Index of /dist/hadoop/common/hadoop-3.3.0为什么要重新编译Hadoop源码? 匹配不同操作系统本地库环境,Hadoop某些操作比如压缩、IO需要调用系统本地库(*.so|*.dll) 修改源码、重构源码 如何…...
PTA L1-054 福到了(详解)
前言:内容包括:题目,代码实现,大致思路,代码解读 题目: “福”字倒着贴,寓意“福到”。不论到底算不算民俗,本题且请你编写程序,把各种汉字倒过来输出。这里要处理的每…...
python -- 魔术方法
魔术方法就算定义在类里面的一些特殊的方法 特点:这些func的名字前面都有两个下划线 __new__方法 相当于一个类的创建一个对象的过程 __init__方法 相当于为这个类创建好的对象分配地址初始化的过程 __del__方法 一个类声明这个方法后,创建的对象如果…...
「JVM 编译优化」提前编译器
1996 年 JDK 1.0 发布,同年 7 月 外挂即时编译器发布(JDK 1.0.2),而 Java 提前编译发布在之后几个月(IBM High Performance Compiler for Java),1998 年 GNU 组织公布 GCC 家族新成员 GNU Compi…...
Golang channel 用法与实现原理
文章目录1.简介2.用法3.三种状态4.实现原理数据结构原理概述5.小结参考文献1.简介 Golang channel 是一种并发原语,用于在不同 goroutine 之间进行通信和同步。本质上,channel 是一种类型安全的 FIFO 队列,它可以实现多个 goroutine 之间的同…...
jackson 序列化、反序列化的时候第一个大写单词变成小写了(属性设置不成功)
参考链接:https://www.baeldung.com/jackson-annotations 遇到的问题 之前和第三方对接,返回的接口中的属性名称是拼音字母大写,奇怪,反序列化的时候好多字段都为空,没设置进去。 因为对接前,我先用 IntelliJ IDEA …...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...
02.运算符
目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&:逻辑与 ||:逻辑或 !:逻辑非 短路求值 位运算符 按位与&: 按位或 | 按位取反~ …...
JDK 17 序列化是怎么回事
如何序列化?其实很简单,就是根据每个类型,用工厂类调用。逐个完成。 没什么漂亮的代码,只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...
