【GNN 03】PyG
工具包安装: 不要pip安装
https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric
import torch
import networkx as nx
import matplotlib.pyplot as pltdef visualize_graph(G, color):plt.figure(figsize=(7, 7))plt.xticks([])plt.yticks([])nx.draw_networkx(G, pos=nx.spring_layout(G, seed=42), with_labels=False, node_color=color, cmap="Set2")plt.show()def visualize_embedding(h, color, epoch=None, loss=None):plt.figure(figsize=(7, 7))plt.xticks([])plt.yticks([])h = h.detach().cpu().numpy()plt.scatter(h[:, 0], h[:, 1], s=140, c=color, cmap="Set2")if epoch is not None and loss is not None:plt.xlabel(f'Epoch: {epoch}, Loss: {loss.item():.4f}', fontsize=16)plt.show()
1 dataset
from torch_geometric.datasets import KarateClubdataset = KarateClub()
print(f'Dataset: idataset] :')
print('===================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')
data = dataset[0]
print(data)
2 source-target
edge_index = data.edge_index
# print(edge_index.t())
3 Visual presentation using networkx
from torch_geometric.utils import to_networkxG = to_networkx(data, to_undirected=True)
visualize_graph(G, color=data.y)
4 GCN model
import torch
from torch.nn import Linear
from torch_geometric.nn import GCNConv
import torch.sparseclass GCN(torch.nn.Module):def __init__(self):super().__init__()torch.manual_seed(1234)self.conv1 = GCNConv(dataset.num_features, 4, cache=False)self.conv2 = GCNConv(4, 4)self.conv3 = GCNConv(4, 2)self.classifier = Linear(2, dataset.num_classes)def forward(self, x, edge_index):h = self.conv1(x, edge_index) # edge_index 邻接矩阵h = h.tanh()h = self.conv2(h, edge_index)h = h.tanh()h = self.conv3(h, edge_index)h = h.tanh()out = self.classifier(h)return out, h

5 Two-dimensional vector
model = GCN()
print(model)_, h = model(data.x, data.edge_index)
visualize_embedding(h, color=data.y)

6 Training model(semi-supervised)
import timemodel = GCN()
criterion = torch.nn.CrossEntropyLoss() # Define loss criterion.
optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # Define optimizer.def train(data):optimizer.zero_grad()out, h = model(data.x, data.edge_index) # h是两维向量,主要是为了咱们画个图loss = criterion(out[data.train_mask], data.y[data.train_mask]) # semi-supervisedloss.backward()optimizer.step()return loss, hfor epoch in range(401):loss, h = train(data)if epoch % 10 == 0:visualize_embedding(h, color=data.y, epoch=epoch, loss=loss)time.sleep(0.3)

相关文章:
【GNN 03】PyG
工具包安装: 不要pip安装 https://github.com/pyg-team/pytorch_geometrichttps://github.com/pyg-team/pytorch_geometric import torch import networkx as nx import matplotlib.pyplot as pltdef visualize_graph(G, color):plt.figure(figsize(7, 7))plt.xtic…...
每日刷题-5
目录 一、选择题 二、算法题 1、不要二 2、把字符串转换成整数 一、选择题 1、 解析:printf(格式化串,参数1,参数2,.….),格式化串: printf第一个参数之后的参数要按照什么格式打印,比如%d--->按照整形方式打印&am…...
RNN简介(深入浅出)
目录 简介1. 基本理论 简介 要快速掌握RNN,可以考虑以下步骤: 学习基本理论:了解RNN的原理、结构和工作原理。掌握RNN的输入输出形式、时间步、隐藏状态、记忆单元等关键概念。学习常见的RNN变体:了解LSTM(Long Shor…...
Leetcode137. 某一个数字出现一次,其余数字出现3次
力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 给你一个整数数组 nums ,除某个元素仅出现 一次 外,其余每个元素都恰出现 三次 。请你找出并返回那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法且使用常数级空…...
原子化CSS(Atomic CSS)
UnoCSS,它不是像TailWind CSS和Windi CSS属于框架,而是一个引擎,它没有提供预设的原子化CSS工具类。引用自掘金,文章中实现相同的功能,构建后的体积TailWind 远> Windi > UnoCSS,体积会小很多。 像这种原子性的…...
pandas 筛选数据的 8 个骚操作
日常用Python做数据分析最常用到的就是查询筛选了,按各种条件、各种维度以及组合挑出我们想要的数据,以方便我们分析挖掘。 东哥总结了日常查询和筛选常用的种骚操作,供各位学习参考。本文采用sklearn的boston数据举例介绍。 from sklearn …...
【随想】每日两题Day.3(实则一题)
题目:59.螺旋矩阵|| 给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 示例 1: 输入:n 3 输出:[[1,2,3],[8,9,4],[7,6,5]]示例 2: …...
阿里后端开发:抽象建模经典案例【文末送书】
文章目录 写作前面1.抽象思维2.软件世界中的抽象3. 经典抽象案例4. 抽象并非一蹴而就!需要不断假设、验证、完善5. 推荐一本书 写作末尾 写作前面 在互联网行业,软件工程师面对的产品需求大都是以具象的现实世界事物概念来描述的,遵循的是人…...
HarmonyOS Codelab 优秀样例——溪村小镇(ArkTS)
一、介绍 溪村小镇是一款展示溪流背坡村园区风貌的应用,包括园区内的导航功能,小火车行车状态查看,以及各区域的风景展览介绍,主要用于展示HarmonyOS的ArkUI能力和动画效果。具体包括如下功能: 打开应用时进入启动页&a…...
Mybatis---第二篇
系列文章目录 文章目录 系列文章目录一、#{}和${}的区别是什么?二、简述 Mybatis 的插件运行原理,如何编写一个插件一、#{}和${}的区别是什么? #{}是预编译处理、是占位符, KaTeX parse error: Expected EOF, got # at position 27: …接符。 Mybatis 在处理#̲{}时,会将…...
6.2.3 【MySQL】InnoDB的B+树索引的注意事项
6.2.3.1 根页面万年不动窝 B 树的形成过程是这样的: 每当为某个表创建一个 B 树索引(聚簇索引不是人为创建的,默认就有)的时候,都会为这个索引创建一个 根节点 页面。最开始表中没有数据的时候,每个 B 树…...
前端面试话术集锦第 12 篇:高频考点(Vue常考基础知识点)
这是记录前端面试的话术集锦第十二篇博文——高频考点(Vue常考基础知识点),我会不断更新该博文。❗❗❗ 这一章节我们将来学习Vue的一些经常考到的基础知识点。 1. 生命周期钩子函数 在beforeCreate钩子函数调用的时候,是获取不到props或者data中的数据的,因为这些数据的…...
骨传导耳机危害有哪些?值得入手吗?
事实上,只要是正常使用,骨传导耳机并不会对身体造成伤害,并且在众多耳机种类中,骨传导耳机可以说是相对健康的一种耳机,这种耳机最独特的地方便是声波不经过外耳道和鼓膜, 而是直接将人体骨骼结构作为传声介…...
网络爬虫-----初识爬虫
目录 1. 什么是爬虫? 1.1 初识网络爬虫 1.1.1 百度新闻案例说明 1.1.2 网站排名(访问权重pv) 2. 爬虫的领域(为什么学习爬虫 ?) 2.1 数据的来源 2.2 爬虫等于黑客吗? 2.3 大数据和爬虫又有啥关系&…...
vue 功能:点击增加一项,点击减少一项
功能介绍: 默认为一列,当点击右侧"" 号,增加一列;点击 “-” 号,将当前列删除; 功能截图: 功能代码: //HTML <el-col :span"24"><el-form-item lab…...
我的编程学习笔记
1. 引言: 在开始编写任何代码之前,都需要理解编程的基本概念。编程是人与计算机进行交流的方式,它让计算机可以理解和执行特定的任务。编程语言是这种交流的工具,而学习编程就是学习如何用特定的语言表达出我们想要的计算机行为。…...
页面静态化、Freemarker入门
页面静态化介绍 页面的访问量比较大时,就会对数据库造成了很大的访问压力,并且数据库中的数据变化频率并不高。 那需要通过什么方法为数据库减压并提高系统运行性能呢?答案就是页面静态化。页面静态化其实就是将原来的动态网页(例如通过ajax…...
PCL (再探)点云配准精度评价指标——均方根误差
目录 一、算法原理二、代码实现三、代码解析四、备注本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、算法原理 见: 点云配准精度评价指标——均方根误差PCL 点云配准精度评价——点到面的均方根误差Open3D(C++) 点…...
【Redis速通】基础知识1 - 虚拟机配置与踩坑
Ubuntu 配置 Redis 下载 redis 找到 redis 官网界面,下载 redis6.2LTS 点击前往 用 mobax 连接到 ubuntu 虚拟机,把下载好的 tar.gz 文件丢到任意一个文件夹下面 进入该文件夹,于此处打开终端,进行解压操作:tar -z…...
我的创作纪念日---从考研调剂到研一的旅程
文章目录 一、前言二、机缘三、收获四、日常五、憧憬 一、前言 大家好,我是小馒头学Python,小馒头学Python就是我,今天是我第一次收到创作纪念日的私信,去年的今天我还在考研,那个时候整天浑浑噩噩的,迷茫…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...

